Это не ! для ремонта водопровода длиной 426 м должны уложить 30 руб разных размеров длиной 5 м и длиной 6 м сколько труб каждого размера нужно нужно составить систему уравнений и решить.
Исправим условие: Для ремонта водопровода длиной 426 метров должны уложить 80 труб разных размеров: длиной 5 метров и длиной 6 метров. Сколько труб каждого размера надо заказать?
Ясно, что из одной точки можно провести к плоскости сколько угодно лучей как под равным, так и под разным углом, и точки их пересечения с плоскостью могут располагаться в разных ее частях, не обязательно на одной прямой. Сделаем рисунок. Рассмотрим ∆ А1ОВ1. Так как АВ и А1В1 расположены в параллельных плоскостях и лежат в плоскости ∆ А1ОВ1, АВ║А1В1. ⇒ соответственные углы этих треугольников образованные пересечением параллельных прямых и секущей равны, и ∆ АОВ~∆ A1OB1 На том же основании ВС║В1С1 и АС║А1С1⇒ ∆ АВС и ∆ А1В1С1 подобны. Из подобия следует: А1О:АО=14:10=k k=1,4⇒ А1В1=2•1,4=2,8 см B1C1=3•1,4=4,2 см A1C1=4•1,4=5,6 см Периметр ∆ А1В1С1=2,8+4,2+5,6=12,6 см
Проекция ребра SA на плоскость будет OA (SO ┴ (ABCDEF) и равна радиусу описанной около основания (здесь правильного шестиугольника) , что свою очередь равна сторону шестиугольника a₆ = R =acosα ; SO =H =asinα . Vпир =1/3*Sосн*H =1/3*6*√3/4*(acosα)²*asinα =(√3/2)*cos²α*sinα*a³ . При α=60° ; a= 2 получаем : Vпир = (√3/2)*1/4*(√3/2*8 =3/2. Апофема пирамиды является образующий конуса Vкон =1/3*π*r² *H r = (√3/2)*R =(√3/2)*acosα. Vкон =1/3*π*((√3/2)*acosα)*asinα =.(π/4)*cos²α*sinα*a³ . Получилось Vкон = ( π/2√3) *Vпир . При α=60° ; a= 2 получаем : Vкон =( π/2√3)*3/2 =π√3/6.
L =√(a² - (R/2)² =√(a² -(1/2*acosα)²) =a/2*√(4 - cos²α) ;
Для ремонта водопровода длиной 426 метров должны уложить 80 труб разных размеров: длиной 5 метров и длиной 6 метров. Сколько труб каждого размера надо заказать?
x+y=80
5x+6y=426
5x+6y=426
5x+5y=400
y=26
x=80-26=54
Проверка: 5*54 + 6*26 =270+156 =426