Дано: ABCD - трапеция общего вида, AD - основание трапеции, M *не принадлежит (Перечеркнутая буква Э, в зеркальном отражении)* плоскости ABCD.
Доказать: AD II BMC
"Точку M можно расположить где угодно, лишь бы она не входила в плоскость ABCD, т.е.
можно делать и не такой чертеж как у меня на рисунке."
Доказательство:
BC - общася сторона трапеции ABCD и треугольника BCM.
В любой трапеции основания параллельны, следовательно BC II AD.
По теореме, если прямая (AD) параллельна другой прямой находящейся в плоскости(BC), то эта прямая (AD) параллельна той самой плоскости (BMC) -> AD II BMC, ч.т.д.
Можно конечно построить график и доказать на полученном чертеже , мол стороны попарно параллельны и все стороны равны.
А можно найти длины каждой стороны ( например АВ , АВ имеет координаты ( из координаты конца, отнимаем соответствующие координаты начала, АВ( 5-1;2-2) АВ(4;0). А длина АВ находится как корень квадратный из суммы квадратов координат АВ=√4²+0²=4, аналогично с другими сторонами).
А если посмотреть внимательно на координаты точек, то можно увидеть , что АС и ВД соответственно лежат на прямых х=1 и х=5, которые параллельны оси ОУ, а значит и друг другу. А АВ и СД на прямых у=2 и у=-2, параллельных оси ОХ, а значит и друг другу. Получаем, что у данного четырехугольника все стороны равны и попарно параллельные + все углы прямые, т.е мы получили квадрат ч.т.д.