(МН·РН) = 4 ед.
(ОР·РК) = -2 ед.
Объяснение:
В прямоугольнике противоположные стороны равны =>
вектора МН = РК.
∠ РОК = 180° - 120° = 60° ( смежные углы).
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
(МН·РН) = (РК·РН) = 2·4·Cos60° = 4 ед.
(ОР·РК) = 2·2·Cos120° = -2 ед.
Серединный перпендикуляр к отрезку АВ.
Объяснение:
В - точка касания окружностей с прямой а, значит радиусы О₁В, О₂В, О₃В и О₄В перпендикулярны прямой а, так как радиус, проведенный в точку касания, перпендикулярен касательной.
Через точку В можно провести единственный перпендикуляр к прямой а, значит центры всех окружностей лежат на одной прямой.
Пусть прямая m - серединный перпендикуляр к отрезку АВ. Тогда m║О₁В как два перпендикуляра, проведенные к одной прямой.
По теореме Фалеса параллельные прямые отсекают на сторонах угла равные отрезки. Если точка М - середина АВ, то прямая m проходит через середины отрезков АО₁, АО₂, АО₃ и АО₄.
Значит, геометрическое место середин отрезков, соединяющих точку А с центрами окружностей, - это серединный перпендикуляр к отрезку АВ.