Через конечную точку a диагонали ac=20,2 ед. изм. квадрата abcd проведена прямая перпендикулярно диагонали ac. проведённая прямая пересекает прямые cb и cd в точках m и n соответственно. определи длину отрезка mn. длина отрезка mn = ед. изм.
Диагонали квадрата являются его биссектрисами и делят его углы на два по 45°. СА перпендикулярна MN (дано), ⇒треугольники МАС и САN - прямоугольные. Поэтому градусная величина углов СМA и CNA – 45°, они равны между собой. Отсюда треугольники СМA и CNA прямоугольные равнобедренные (углы при их основаниях СМ и СN равны) с общим катетом СА. Они равны между собой. МС=СN, МА=NА. Треугольник МСN равнобедренный, отрезок СА для треугольника СМN является медианой и равен половине гипотенузы MN. ⇒ MN=2•CA=2•20,2=40.4 ед. измерения.
Диагональ трапеции делит ее на два треугольника. Отрезки средней линии трапеции являются средними линиями треугольников (см. рисунок) По определению средней линии ее длина равна половине длины параллельного ей основания. Следовательно, длины оснований трапеции равны: 1,5 х 2 = 3 7,5 х 2 = 15
Площадь трапеции равна произведению полусуммы оснований на высоту: S = (a+b)h/2 Отсюда высота трапеции: h = 2S/(a+b) = 2 x 72 / (15+3) = 8
Так как трапеция является равнобедренной, углы при ее основаниях попарно равны. Высоты, проведенные от верхнего основания к нижнему, делят нижнее основание на три отрезка: 6 + 3 + 6 = 15 (см.рисунок) Длину боковой стороны найдем по теореме Пифагора из образовавшегося прямоугольного треугольника (боковая сторона - гипотенуза, катеты - высота и часть нижнего основания) √8²+6² = √100 = 10
Найдём, по теореме Пифагора, второй катет в данном прямоугольном треугольнике, он равен , найденный нами катет является меньшим, поэтому вращение треугольника происходит вокруг него, при этом образуется конус. Осевое сечение конуса представляет собой равнобедренный треугольник, в котором боковые стороны равны образующей, а основание равно диаметру окружности, лежащей в основании конуса, в данном случае образующая равна гипотенузе, диаметр-двум большим катетам данного треугольника, а высота-меньшему катету, значит площадь сечения равна:
ответ: 40,4 (ед. длины)
Объяснение:
Диагонали квадрата являются его биссектрисами и делят его углы на два по 45°. СА перпендикулярна MN (дано), ⇒треугольники МАС и САN - прямоугольные. Поэтому градусная величина углов СМA и CNA – 45°, они равны между собой. Отсюда треугольники СМA и CNA прямоугольные равнобедренные (углы при их основаниях СМ и СN равны) с общим катетом СА. Они равны между собой. МС=СN, МА=NА. Треугольник МСN равнобедренный, отрезок СА для треугольника СМN является медианой и равен половине гипотенузы MN. ⇒ MN=2•CA=2•20,2=40.4 ед. измерения.