Дано: равносторонний треугольник АВС, R = 20 см
Найти: P - ?
1. Радиус описанной окружности вокруг равностороннего треугольника равен двум радиусам вписанной в него окружности => r = 20:2 = 10 см.
2. Если сложить два радиуса, получим высоту, медиану и биссектрису треугольника одновременно, так как он равносторонний => этот отрезок равен 10 + 20 = 30.
Рассмотрим прямоугольный треугольник, который отсёк этот отрезок (прямоуг. т. к. высота). Одна из сторон будет равна Х, другая - 2Х (т.к. Х - половина стороны р/ст треугольника, которую отсекла медиана, являющаяся высотой)
По теореме Пифагора находим Х:
4х² - х² = 900
3х² = 900
х² = 300
х = 10√3 и х = -10√3, но этот корень не подходит по усл., а значит он посторонний.
3. 10√3 - половина стороны, значит вся сторона = 20√3
Р = 3 * 20√3 = 60√3
ответ: 60√3
Объяснение:
По свойству отрезков касательных к окружности: отрезки
НД=ХД, СН=МС, ВМ=ВZ, АZ=AX. Если в прямоугольную трапецию вписана окружность, то сумма её оснований равна сумме её боковых сторон, т.е
АД+ВС=АВ+СД. Если в прямоуг. тр. вписана окр., то высота равна боковой стороне АВ=2r =2*2 (r-радиус окружности), значит по свойству касательных ZB=BM=2 , MC=3-BM=3-2=1, если точка касания делит боковую сторону на отрезки СН и НД, то радиус вписанной окружности равен r=√(CH*НД)
отсюда r²=CH*НД
2²=1*НД
НД=4
НД+СН=5,
теперь подставив в формулу АД+ВС=АВ+СД , получим
АД+3=4+5
АД=9-3=6
S=(BC+AД)/2*МХ
S=(3+6)/2*4=18
Подробнее - на -
BK - высота и медиана: BK⊥AC; AK = KC = AC/2 = 18/2 = 9 см
ΔOKC - прямоугольный: ∠OKC = 90°. Теорема Пифагора
OK² = OC² - KC² = 15² - 9² = 144 = 12² ⇒ OK = 12 см
KB = OB - OK = 15 - 12 = 3 см
ΔBKC - прямоугольный: ∠BKC = 90°. Теорема Пифагора
BC² = KB² + KC² = 3² + 9² = 90 ⇒ BC = √90 = 3√10 см
Периметр ΔABC
P = AC + 2 BC = 18 + 6√10 см