Вравнобокую трапецию вписана окружность с радиусом 12 см. одна из боковых сторон точкой касания делится на два отрезка, больший из которых равен 16 см. найдите площадь трапеции.
Пусть длина малого основания 2х см тогда боковые стороны равны по 16+х см большее основание 32 см. С вершины такого угла опустив перпендиляр на большее основание имеем прямоугольный треугольник с катетами ( высотой) 12 см и 16 -х см. применяя т. Пифагора (16-х)^2 + 144 =(16+х)^2 решая получим х = 2,25. отсюда одно основание 16+16=32, второе основание 2,25×2=4,5 площадь трапеции (4,5+32)×(12+12)/2=438
1. Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1. S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r. значит можно. 2. Не может. k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ . Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂. CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃. DB =BE ⇒k₂ =2k₁ ; EC =CF ⇒k₃ =2k₂ =4k₁ . AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁ ⇒ AB+BC< AC ,что невозможно.
Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂. DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.
Призма правильная, значит внутренние углы треугольника в основании равны 60 градусов, тогда угол АВА1, вертикальный углу АВС, так же равен 60, тогда в прямоугольном треугольнике А1ВА сторона АВ=1/2А1В, при чем сумма этих сторон 9 корней из 2, составим уравнение, где АВ=х х+2х=9 корней из 2 3х=9 корней из 2 х=3 корня из 2 В итоге сторона АВ=3 корня из 2, а сторона АВ1=6 корней из 2 Найдём сторону АА1 по теореме Пифагора, АА1=3 корня из 6, тогда площадь одной боковой грани равна S=АА1*АВ=18 корней из 3, тогда полная боковая площадь Sбок= 3S=54корня из 3, а квадрат этой площади равен 8748