Help, please! в треугольнике авс точка d на стороне вс и точка f на стороне ас расположены так, что вd: dc=3: 2, af: fc=3: 4. отрезки ad и bf пересекаются в точке р. найдите отношение ар: pd.
Есть как минимум решить эту задачу - с теоремы Менелая и с теоремы о пропорциональных отрезках. Первый проще, второй понятнее. Решим, скажем вторым По условию BD=3x, DC=2x, AF=3y, FC=4y.
Возьмем на отрезке FC точку E так, чтобы DE║ BF. По теореме о пропорциональных отрезках, примененной к углу BCA и параллельным прямым BF и DE, FE:EC=BD:DC=3:2. То есть если отрезок FC разделить на 5 равных отрезков, три из них покроют отрезок FE, остальные два - EC. Поэтому EF=(3/5)FC=(3/5)4y=12y/5. По теореме о пропорциональных отрезках, примененной к углу DAC и параллельным прямым PF и DE, AP:PD=AF:FE=(3y)/(12y/5)=5/4.
Ладно, уговорили, сделаем задачу и первым Кто не знает теорему Менелая, разобравшись в решении, поймет суть этой теоремы (а можно залезть в интернет и найти точную формулировку; можно и умную книжку поискать на своей книжной полке). Применим теорему Менелая к треугольнику ADC и прямой BF:
1. Луч-часть прямой, состоящая из данной точки и всех точек, лежащих по одну сторону от неё.(есть начало, нет конца). 2. Угол-часть плоскости между двумя линиями, исходящими из одной точки. 3. Снежный угол- называются два прилежащих угла, несовпадающие стороны которых образуют прямую. Вертикальные углы — пара углов, у которых вершина общая, а стороны одного угла составляют продолжение сторон другого угла 4. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Возьмем точки А и В так, чтобы XKNA и XLMB были параллелограммами и продлим XY за точку Y на свою длину до точки С (см. рис). Треугольник ANY равен треугольнику BMY по двум сторонам и углу между ними (AN=XK=XL=BM, NY=MY и ∠ANY=∠BMY как внутренние накрест лежащие, т.к. АN||KL||MB и MN - секущая). Значит AY=BY, т.е. AXBC - параллелограмм. Тогда ∠KVX=∠AXY=∠XCB, ∠LWX=∠BXC, BC=XA=KN и BX=LM, а т.к. по условию LM<KN, то BX<BС. Т.к. в любом треугольнике (в том числе XCB) напротив меньшей стороны лежит меньший угол, то ∠XCB<∠BXC, а значит и ∠KVX<∠LWX.
По условию BD=3x, DC=2x, AF=3y, FC=4y.
Возьмем на отрезке FC точку E так, чтобы DE║ BF. По теореме о пропорциональных отрезках, примененной к углу BCA и параллельным прямым BF и DE, FE:EC=BD:DC=3:2. То есть если отрезок FC разделить на 5 равных отрезков, три из них покроют отрезок FE, остальные два - EC. Поэтому EF=(3/5)FC=(3/5)4y=12y/5. По теореме о пропорциональных отрезках, примененной к углу DAC и параллельным прямым PF и DE, AP:PD=AF:FE=(3y)/(12y/5)=5/4.
Ладно, уговорили, сделаем задачу и первым Кто не знает теорему Менелая, разобравшись в решении, поймет суть этой теоремы (а можно залезть в интернет и найти точную формулировку; можно и умную книжку поискать на своей книжной полке). Применим теорему Менелая к треугольнику ADC и прямой BF:
(AP/PD)·(DB/BC)·(CF/FA)=1⇒AP/PD=(BC/DB)·(FA/CF)=(5/3)·(3/4)=5/4
ответ: 5/4