Объяснение:
С(-16,5;-5,5) или С(-21,5;-6,5)
Объяснение:
1) Точки С делит отрезок АВ в отношении пять к трем считая от точки А, значит ВС:СА=3:5, значит ВС:ВА=3:8. Координаты ВА ( -9-11;-4-0). ВА(-20;-4), тогда ВС=3/8ВА. ВС=(3/8*(-20);3/8*(-4)), ВС(-15/2;-3/2).
Имеем В(-9;-4), ВС(-15/2;-3/2), то С( -15/2-9;-3/2-4), С(-16,5;-5,5)
Примечание: Координаты вектора правильно писать в фигурных скобках, а коордитнты точки- в круглых
2) Точки С делит отрезок АВ в отношении пять к трем считая от точки В, значит ВС:СА=5:3, значит ВС:ВА=5:8. Координаты ВА ( -9-11;-4-0). ВА(-20;-4), тогда ВС=5/8ВА. ВС=(5/8*(-20);5/8*(-4)), ВС(-25/2;-5/2).
Имеем В(-9;-4), ВС(-25/2;-5/2), то С( -25/2-9;-5/2-4), С(-21,5;-6,5)
С(-16,5;-5,5) или С(-21,5;-6,5)
Объяснение:
1) Точки С делит отрезок АВ в отношении пять к трем считая от точки А, значит ВС:СА=3:5, значит ВС:ВА=3:8. Координаты ВА ( -9-11;-4-0). ВА(-20;-4), тогда ВС=3/8ВА. ВС=(3/8*(-20);3/8*(-4)), ВС(-15/2;-3/2).
Имеем В(-9;-4), ВС(-15/2;-3/2), то С( -15/2-9;-3/2-4), С(-16,5;-5,5)
Примечание: Координаты вектора правильно писать в фигурных скобках, а коордитнты точки- в круглых
2) Точки С делит отрезок АВ в отношении пять к трем считая от точки В, значит ВС:СА=5:3, значит ВС:ВА=5:8. Координаты ВА ( -9-11;-4-0). ВА(-20;-4), тогда ВС=5/8ВА. ВС=(5/8*(-20);5/8*(-4)), ВС(-25/2;-5/2).
Имеем В(-9;-4), ВС(-25/2;-5/2), то С( -25/2-9;-5/2-4), С(-21,5;-6,5)
2. в равнобедренном тр-ке углы при основании равны: угол АСВ равен углу ВАС и равны они по 50°. Согласно теореме о сумме углов тр-ка угол АВС равен:
АВС=180°-50°-50°=80°
3. внешний угол тр-ка при данной вершине - это угол, смежный с внутренним углом тр-ка при этой вершине, и он равен сумме двух других внутренних углов тр-ка. Т.к. внешний угол равен 52°, то смежный с ним <B=180°-52°=128°. Т.к. тр-к АВС равнобедренный, то <A=<C=(180°-128°):2=26°