Пусть у нас трапеция АВСД, АВ = СД, АС - биссектриса угла А, угол АСД - прямой. Если биссектриса острого угла трапеции является его диагональю, то меньшее основание трапеции равно её боковой стороне. Имеем АВ = ВС =СД = а. Опустим перпендикуляр СЕ из точки С на АД. При этом получили 2 подобных треугольника: АСЕ и ЕСД. Угол САЕ равен углу ДСЕ как взаимно перпендикулярные. Угол А равен углу Д (как углы при основании равнобедренной трапеции). Поэтому угол ДСЕ равен половине угла Д. Имеем: 90° =(1/2)Д+Д = (3/2)Д, Отсюда угол Д = 90*2/3 = 180/3 = 60°. Тогда ЕД = а/2, а основание АД = а+2(а/2) = 2а. Высота СЕ = а*sin 60° = a√3/2. Площадь S трапеции равна: S = ((a+2a)/2)*(a√3/2) = (3a/2)*(a√3/2) = 3√3a²/4. То есть данная трапеция равна площади трёх равносторонних треугольников со стороной а.
Пусть у меньшей окружности радиус R и расстояние от вершины угла до центра D; а у большой k*R и k*D; - ясно, что эти расстояния пропорциональны. k нужно найти из отношения площадей. Условие, что окружности касаются, означает, что k*D - D = R + k*R; то есть R/D = (k* - 1)/(k + 1); легко видеть, что R/D это синус половины угла, который надо найти, так как центры окружности лежат на биссектрисе. Что касается величины к, то её нетрудно подобрать, k^2 = 97 + 56√3; Легко видеть, что k^2 = 49 + 2*7*4√3 + 48 = (7 + 4√3)^2; то есть k = 7 + 4√3; технически задача уже решена. sin(α/2) = (7 + 4√3 - 1)/(7 + 4√3 +1) = √3/2; все преобразования сделайте сами. То есть α/2 = 60°; α = 120°;