Заранее ! в пирамиде dabc da=db=dc=ac=2 см, ав=вс, угол авс = 90°. точки м и к - середины рёбер ad и сd соответственно. постройте сечение пирамиды плоскостью, проходящей через точки в, м и к. найдите площадь полученного сечения.
Дано: δ авс∠с = 90°ак - биссектр.ак = 18 смкм = 9 смнайти: ∠акврешение. т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) к на гипотенузу ав и обозначим это расстояние км. рассмотрим полученный δ акм, т.к. ∠амк = 90°,то ак гипотенуза, а км - катет. поскольку, исходя из условия, катет км = 9/18 = 1/2 ак, то ∠кам = 30°. т.к. по условию ак - биссектриса, то ∠сак =∠кам = 30° рассмотрим δакс. по условию ∠аск = 90°; а∠сак = 30°, значит, ∠акс = 180° - 90° - 30° = 60° искомый ∠акв - смежный с ∠акс, значит, ∠акв = 180° - ∠акс = 180° - 60° = 120° ответ: 120°
Построение отрезка, равного данному. дан - отрезок ab. требуется - построить равный ему отрезок (такой же длины). для этого - построим произвольный луч с началом в новой точке c. циркулем замерим данный отрезок ab. теперь тем же самым раствором циркуля на построенном луче от его начала - c - отложим отрезок, равный данному. для этого иглой циркуля упираем в начало луча c, а пишущей ножкой проводим дугу до пересечения с лучом. точку пересечения назовём d. отрезок cd равен отрезку ab. построение закончено. источник:
МК =2/2 = 1 см как средняя линия.
Стороны основания АВ = ВС = 2*cos 45° = 2*(√2/2) = √2 см.
Косинус угла ДС = (ВС/2)/СД = √2/4.
Находим ВК по теореме косинусов:
ВК = √((√2)²+1²-2*√2*1*(√2/4)) = √(2+1-1) = √2 см.
Треугольник ВМК - равнобедренный, ВМ = ВК.
Его высота h = √((√2)²-(1/2)²) = √7/2.
Получаем ответ: S(BMK) = (1/2)*1*(√7/2) =(√7/4) см².