Условие задачи дано с ошибкой: если в основании прямоугольного параллелепипеда квадрат, то диагональ основания составляет с боковой гранью угол 45°, а не 30°. Кроме того, по этим данным невозможно найти высоту прямоугольного параллелепипеда.
Задача встречается в таком виде: Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда. Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
Втреугольнике сумма углов равна 180° запишем эту истину для треугольника авс ∠а+∠в+∠с=180° то же самое - для треугольника амс ∠1/2 а+ ∠1/2 с+ ∠амс=180° но по условию ∠амс=3∠в, поэтому ∠1/2 а+ ∠1/2 с+ 3∠в=180° из треугольника авс ∠а +∠с=180 -∠в найдем сумму половин углов а и с (∠а +∠с): 2=(180°-∠в): 2 подставим значение суммы половин углов а и с в уравнение для треугольника амс (180° -∠в): 2 + 3∠в=180° умножим обе стороны уравнения на 2, чтобы избавиться от дроби: 180° -∠в +6∠в=360° 5∠в=180° ∠в=180°: 5=36°