ответ:Номер 1
Диагонали прямоугольника в точке пересечения делятся пополам
Треугольник АОВ равнобедренный
<АВО=<ВАО=42 градуса
<ВОА=180-42•2=180-84=96 градусов
<АОD=(360-96•2):2=168:2=84 градуса
Номер 2
<1=<2=90 градусов
<3=35 градусов
<4=180-35=145 градусов
Номер 3
Одна сторона 2Х
Вторая 3Х
2Х•2+3Х•2=30
10Х=30
Х=30:10
Х=3
Одна сторона 3•2=6 см
Вторая 3•3=9 см
Номер 4
Углы при большом основании
<1=<2=106:2=53 градуса
Углы при меньшем основании
(360-53•2):2=127 градусов
<3=<4=127 градусов
Объяснение:
1)Для решения рассмотрим рисунок
Рассмотрим треугольники МДО и КДР, у которых угол МДО = КДР, как вертикальные углы при пересечении прямых КО и РМ, угол ДРК треугольника КДР равен углу ОМД треугольника МДО, так как они накрест лежащие углы при пересечении параллельных прямых МО и КР секущей РМ. Тогда, по первому признаку подобия треугольников, треугольники МДО и КДР подобны.
Запишем отношение сторон подобных треугольников.
МО / КР = ДО / ДК.
12 / 16 = ДО / 20.
ДО = 12 * 20 / 16 = 15 см.
ответ: ДО = 15 см.
3) ВД =х, ДС=21-х,
ВД/ДС=АВ/АС, х/(21-х) = 18/24. 24х=378-18х, х=9 =ВД, ДС=21-9=12
AOC = 3x
OCB = 1x
AOB = AOC + OCB
4X = 136
X = 34
ответ : AOC = 3×34 = 102, OCB= 1×34=34
2) Бисектриса кута AOB = 136 / 2 = 68