68. По данным на рисунке найдите площадь .
- - -Дано :ΔСКВ - прямоугольный (∠С = 90°).
СК - высота (СК⊥АВ).
АК = 4, КВ = 16.
Найти :Решение :В прямоугольном треугольнике высота, проведённая к гипотенузе - это среднее геометрическое между отрезками, на которое поделило основание высоты гипотенузу.Следовательно,
Площадь прямоугольного треугольника равна половине произведения его катетов.Следовательно, ед².
ответ :64 ед².
- - -70. ABCD - прямоугольник. Найдите .
- - -Дано :Четырёхугольник ABCD - прямоугольник.
АС - диагональ.
HD⊥АС.
HD = 6, АН = 9.
Найти :Решение :Прямоугольник - это параллелограмм, все углы которого прямые.Следовательно ∠D = 90°.
Рассмотрим ΔACD - прямоугольный.
В прямоугольном треугольнике высота, опущенная на гипотенузу - это среднее геометрическое между отрезками, на которое поделило основание высоты гипотенузу.Следовательно,
Площадь треугольника равна половине произведения высоты и стороны, на которую опущена эта высота.Следовательно, ед².
Диагональ параллелограмма делит параллелограмм на два равновеликих (равных по площади) треугольника.Тогда = 2*39 ед² = 78 ед².
ответ :78 ед².
Находим координаты точки С, симметричной точке А относительно точки Е.
х(С) = 2х(Е) - х(А) = 2*1 - 1 = 1,
у(С) = 2у(Е) - у(А) = 2*0 - 4 = -4. Точка С(1; 4),
Далее есть несколько вариантов нахождения площади параллелограмма.
1) Есть прямая формула по координатам точек треугольника АВС найти его площадь.
А площадь параллелограмма равна двум площадям треугольника АВС.
S(АВС)=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 24.
S(АВСД) = 2*24 = 48.
2) Можно сделать то же самое с применением формулы Герона для определения площади треугольника АВС.
Находим длины сторон:
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √ 85 ≈ 9,219544457.
ВC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √37 ≈ 6,08276253.
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √64 = 8.
Периметр равен Р = 23,302307,
полупериметр р = 11,65115.
S(АВС) = √(p(p-a)(p-b)(p-c)) = 24.
S(АВСД) = 2*24 = 48.
3) площадь параллелограмма через стороны и угол А: S = absin A.
Угол находим по теореме косинусов после определения диагонали ВД.
Решение громоздкое.
4) площадь параллелограмма через диагонали и угол между ними.
Угол между диагоналями находится после определения их угловых коэффициентов. Тоже решение не простое.