6. Дано: ΔАВС, СР-биссектриса, АР=4 см, ВР=5 см
Найти: Периметр ΔАВС
1. СР- биссектриса ΔАВС => АР:ВР=АС:ВС
4:5=10:ВС
ВС=(5*10):4=12,5 (см)
2. Р(АВС)=АВ+ВС+АС=(АР+ВР)+ВС+АС
Р(АВС)=4+5+12,5+10= 31,5 (см)
ответ: 31,5 см
Объяснение:
7. Позначимо ромба АВСD, АВ = 5см, О - точка перетину діагоналей АС і ВD, АС = 6см. Знайти висоту АК
Розв"язання:
Діагоналі ромба рівні, звідси, АО = СО = АС/2=6/2=3, ВО = ОD
З прямокутного трикутника АВО( кут АОВ = 90 градусів):
За т. Піфагора
Звідси, діагональ ВD = 2ВО = 2*4= 8см.
Знаходимо полщу ромба
Тоді висота ромба дорівнює:
Відповідь: 4.8 см.
Объяснение:
ответ, проверенный экспертом
4,6/5
237
Владимир1111111
хорошист
12 ответов
3.4 тыс. пользователей, получивших
Пусть х- один угол, тогда второй - х+30. При пересечении диагоналей образуется прямоугольный треугольник с углом 90 градусом.
х+х+30+90=180
2х+120=180
2х=60
х=30
1 угол = 30 градусов, тогда 2 угол 2х30=60
Поскольку ромб это параллелограмм то он имеет все свойства параллелограмма, соответственно противолежащие углы равны. Тоесть, если 1 угол равен 30, то противолежащий угол тоже равен 30 градусов. С 2 углом тоже самое. ответ: 30, 60, 30, 60.
Такс, в ромбе диагональ выполняет функцию биссектрисы, значит 2х30=60, 2х60=120, потому что биссектриса делит углы пополам.
1)
А . Дано: тр.СHB∈ плоскости а; АН ⊥ а; AB=AC=25 cм; AH=15 cм
/· \ СН=НВ - проекции АС и АВ на пл. а
/ ·H \ Найти: СВ
/\ РЕШЕНИЕ:
C B В тр.АСН: <CHA=90*; CH=√(25²-15²) = √400=20 (см)
В тр. СНВ: СН=ВН; <CHB=60* ---> тр. СНВ - равносторонний и СВ=СН=ВН=20 (см) ОТВЕТ 20см
2) Дано: плоск.(трАКВ)⊥ плоск.(квадрата АВСD)
AB=DC=4 см; AD=BC=3см; АК=3см
K AB Найти КС
| \ | | РЕШЕНИЕ:
| \ | | В тр.КАС: <KAC=90*
| \ DC Катеты: АК=12см; АС=√(4²+3²)=5 (см)
AC Гипотенуза КС=√(12²+5²)=√169=13(см)
ОТВЕТ 13 см