<Х=<36=36 градусов,как вертикальные
<Z=(180-36):3=48 градусов
<Y=<в 2 р=48•2=96 градусов
Угол,противоположный углу Z равен 48 градусов,как вертикальные
Номер 2
<Y=(180-44-62):2=74:2=37 градусов
<Z=<на 62=37+62=99 градусов,как вертикальные
<Х=<44=44 градуса,как вертикальные
Объяснение:При пересечении трёх прямых образовались три пары вертикальных углов и 3 смежных угла,вертикальные углы попарно равны,а смежные углы равны 180 градусов
В первой задаче смежный угол состоит из трёх углов
<36+<Z+<в 2 р=180 градусов
Один угол известен,мы узнаём,чему равны 2 остальных
180-36=144 градуса
И если один угол в два раза больше другого,получается,что один угол-1часть,а второй 2 части
144:3=48 градусов один угол
Второй
48•2=96 градусов
Во второй задаче тоже самое
<на 62+<Y+<44=180 градусов
Два неизвестных угла равны
180-44=136 градусов
Один угол больше другого на 62
(136-62):2=74:2=37 градусов
37+62=99 градусов
1) 180-32 т. к угол АОС смежный с углом СОВ = 148°
2) находится угол СОВ =180-160=20° ,
ОД - биссиктриса СОВ , СОД = 20:2=10°, угол АОД =10+160=170°
3) через пусть Х. Пусть х это 1 часть тогда АВ =5х, ВС =4х ,. Т. к сумма смежных углов =180 . То составим и решим уравнение
5х+4х=180
9х=180
Х=180:9
Х=20
Ав =5*20=100°
ВС=4*20=80°
4) углы 1 и 3 вертикально, а значит равны, угол 1 и 3 =50:2 =25 °
Угол 2 и 4 =180-25 =155°
5) угол 3 = 260-180(угол1+угол2) =80
Угол 3 =угол 1 т. к они вертикальны угол 1=80°
Угол 2=180-80=100°
Так как угол 2 вертикальный с 4 уголом, то угол 4=100°
6) через пусть Х. Пусть Х это угол 3 , значит угол 2=х+30 . Тк сумма смежных углов 180 , то составим и решим уравнение
Х+Х+30=180
2х +30=180
2х=180-30
2х=50
Х=25 °
Угол 3 и 1 вертикальны, значит угол 1 равен 25°
Угол 2 и 4 = 25+30 = 55 °
7)через пусть Х. Пусть Х это угол 1 , значит угол 4 = 3х. Так как сумма смежных углов =180 . Составим и решим уравнение.
3х+х=180
4х=180
Х=180:4
Х=45
Угол 3и 1 равны так как вертикальны , угол 1 равен 45
Угол 4 и 2 вертикальны, значит равны 45*3=135
3√3/OT = cos(60°)
3√3/OT = √3/2
OT = 6
T(6;0)
--- 2 ---
E₂M₂ = √3
E₂M₂/E₂T = tg(30°)
√3/E₂T = √3
E₂T = 1
E₁T = 1
M₁(7;√3)
M₂(5;-√3)
--- 3 ---
b = h*2/√3
проекция стороны b на горизонтальный луч угла
h/√3
Подобие треугольников, образованных перпендикулярами к горизонтальному лучу угла, отрезками луча угла и секущей
√3/(5-a) = h/(a-h/√3))
a√3 - h = 5h - ah
a(h+√3) = 6h
a = 6h/(h+√3)
Теорема косинусов для третьей стороны
c² = a² + b² - 2*a*b*cos(60)
c² = a² + b² - a*b
и ограничение на периметр = 12
a + b + c = 12
c² = (12 - a - b)²
a² + b² - a*b = 144 + a² + b² - 24a - 24b + 2ab
144 - 24a - 24b + 3ab = 0
144 - 24(6h/(h+√3)) - 24(h*2/√3) + 3(6h/(h+√3))(h*2/√3) = 0
144 - 144h/(h+√3) - 16h√3 + 12h²√3/(h+√3) = 0
Домножаем на (h + √3)
144(h+√3) - 144h - 16h√3(h+√3) + 12h²√3 = 0
144h + 144√3 - 144h - 16h²√3 - 48h + 12h²√3 = 0
144√3 - 48h - 4h²√3 = 0
36√3 - 12h - h²√3 = 0
h² + 4√3*h - 36 = 0
D = 48 + 4*36 = 48+144 = 192 = (8√3)²
h₁ = (-4√3 - 8√3)/2 = -6√3
h₂ = (-4√3 + 8√3)/2 = 2√3
Отрицательный корень в мусор
h = 2√3
a = 6*2√3/(2√3+√3) = 6*2√3/(3√3) = 4
b = 2√3*2/√3 = 4
c² = 4² + 4² - 2*4*4*1/2
c² = 16 + 16 - 16 = 16
c = 4
a + b + c = 12
Площадь треугольника
S = a*h/2 = 4√3
----------------
Точка М₁ действительно генерирует треугольники с большим периметром. Вычисление минимального периметра мне не удалось, но периметр четырёхугольника, образованного сторонами угла и перпендикуляром к ним равен
7 + 5 + √3 + 3√3 = 12 + 4√3, а любая секушая, проходящая через М₁ даст бОльший периметр треугольника, чем четырёхугольника.
Как-то так.