Полупериметр равен 312:2=156 м. Одна сторона х, тогда другая сторона 12х. х+12х=156 13х=156 х=12 Одна сторона 12 м, другая 12*12=144 м. ответ: 12 м, 12 м, 144 м, 144 м.
Отрезки касательных, проведённые из одной точки, равны, значит, одна боковая сторона равна 2+32 = 34, вторая равна ей, меньшее основание равно 2+2 = 4, большее равно 32+32 = 64. Проводим две высоты к большему основанию, а также диаметр, перпендикулярный к основанию. Высоты и перпендикуляр параллельны, кроме того, отрезки высот отсекают на большем основании три отрезка, два из которых соответственно равны, а третий равен меньшему основанию, т.е. равен 4. Значит, равные отрезки, на которые делят высоты большее основание равны 1/2*(64-4) = 30. Далее по теореме Пифагора находим высоту, т.е. катет прямоугольного треугольника, который равен √(34²-30²) = √(1156-900) = √256 = 16.
Теорема . три высоты любого треугольника пересекаются в одной точке. доказательство: пусть abc - данный треугольник . пусть прямые, содержащие высоты ap и bq треугольника abc пересекаются в точке o. проведем через точку a прямую, параллельную отрезку bc, через точку b прямую, параллельную отрезку ac, а через точку c - прямую, параллельную отрезку ab. все эти прямые попарно пересекаются. пусть точка пересечения прямых, параллельных сторонам ac и bc - точка m, точка пересечения прямых, параллельных сторонам ab и bc - точка l, а прямых, параллельным ab и ac - точка k. точки klm не лежат на одной прямой, (иначе бы прямая ml совпадала бы с прямой mk, а значит, прямая bc была бы параллельна прямой ac, или совпадала бы с ней, то есть точки a, b и c лежали бы на одной прямой, что противоречит определению треугольника) . итак, точки k, l, m составляют треугольник. ma параллельно bc, и mb параллельно ac по построению. а значит, четырёхугольник macb - параллелограмм. следовательно, ma = bc, mb = ac. аналогично al = bc = ma, bk = ac = mb, kc = ab = cl. значит, ap и bq - серединные перпендикуляры к сторонам треугольника klm. они пересекаются в точке o, а значит, co - тоже срединный перпендикуляр. co перпендикулярно kl, kl параллельно ab, а значит co перпендикулярно ab. пусть r - точка пересечения ab и cq. тогда cr перпендикулярно ab, то есть cr - это высота треугольника abc. точка o принадлежит всем прямым, содержащим высоты треугольника abc. значит, прямые, содержащие высоты этого треугольника пересекаются в одной точке. что и требовалось доказать. может правильно )
Одна сторона х, тогда другая сторона 12х.
х+12х=156
13х=156
х=12
Одна сторона 12 м, другая 12*12=144 м.
ответ: 12 м, 12 м, 144 м, 144 м.