Пусть дан треугольник АВС, и пряммые АВ и АС параллельны плоскости Альфа. Пряммые АВ и АС пересекаются. Через них можно провести плоскость и причем одну. Пусть плоскость которая проходит через пряммые АВ и АС - плоскость Бэта. Тогда она параллельна плоскости Альфа, так как две пересекающиеся пряммые этой плоскости параллельны плоскости Альфа.
Далее. Две точки В и С принадлежат плоскости Бэта (так как принадлежат пряммые АВ и АС), значит и вся пряммая ВС принадлежит плоскости Бэта. Любая пряммая плоскости Бэта паралельна плосоксти Альфа (так плоскосит параллельны), в частности пряммая ВС параллельна плоскости Альфа.
ответ: третья пряммая тоже паралелльна плоскости
1) чтобы через две скрещивающиеся прямые построить две параллельные плоскости, необходимо:
- провести прямую с, пересекающую прямую b и параллельную прямой а
- провести прямую d, пересекающую прямую a и параллельную прямой b
Получится две пересекающиеся прямые, которые параллельны двум другим пересекающимся прямым, а значит эти пересекающиеся прямые лежат в плоскостях параллельных друг другу.
2) Третья сторона тоже параллельна плоскости
3) прямые MN и AD могут:
- пересекаться
- совпадать друг с другом (но при этом другие прямые трапеции не лежат в плоскости ромба)
- скрещиваться
половина основания 5 см как нижний катет, неизвестная(пока) высота как вертикальный катет и образующая 6 см как гипотенуза.
По т. Пифагора
5² + h² = 6²
25 + h² = 36
h² = 11
h = √11 см
Площадь круглого основания
S = πd²/4 = π*10²/4 = 25π см²
Объём
V = 1/3*Sh = 1/3*25π*√11 = 25π√11/3 см³
Площадь квадратного основания
S = a²
Объём пирамиды
V = 1/3*Sh
32 = 1/3*a²*6
16 = a²
a = 4 см