Из точки м лежащей вне плоскости треугольника авс проведён к этой плоскости перпендикуляр ма длиной 12 см. найдите длины наклонных mb и mc если катеты ac и bc равны 4см и 3см соответственно
Если рассмотреть сечение, то получится прямоугольник со сторонами 2х и h , вписан в равнобедренный треугольник Составлю площадь поверхности цилиндра с радиусом х и высотой h (выраженной через х) как функцию от х и через производную найду ее максимум. найденное х подставлю в обем цилиндра... 1) выражу h через х из ΔАВН tgA=h/(6-x); h=(6-x)*tgA=(6-x)*(15/6)=5(6-x)/2=15-2.5x S(пов)=2pix^2+2pix*h=2pi*x^2+2pix(15-2.5x)= =2pix^2+30pix-5pix^2=30pix-3pix^2 приравниваю производную по х к 0 30pi=6pix x=5 h=5/2=2.5 V=pix^2*h=pi*5^2*2.5=62.5pi
Сумма острых углов прямоугольного треугольника равна 90°. Биссектриса острого угла равна одному из двух отрезков на которые она разделила противоположную сторону. Значит имеем равнобедренный треугольник, в котором углы при основании (гипотенузе данного нам прямоугольного треугольника) равны. Но ожин из этих углов - второй острый угол данного нам прямоугольного треугольника и он равен половине первого острого угла (биссектриса которого нам дана) Значит сумма острых углов нашего прямоугольного тр-ка равна сумме 3-х одинаковых углов, то есть второй острый угол равен 30°. В прямоугольном треугольнике против угла 30° лежит катет, равный половине гипотенузы. Гипотенуза здесь - это наша биссектриса. И она вдвое длиннее катета -второго из отрезков, на которые она разделила противоположную сторону исходного треугольника. Что и требовалось доказать.
Отмечай решение как лучшее :)