Впараллелограмме abcd биссектрисы углов а и d пересекают сторону вс в точках м и к соответственно, а отрезки ам и dк пересекаются в точке р. найти длину стороны вс, если известно, что ав=15 и ар: рм = 3: 2.
Рисунок через редактор у меня вставить не получается, но... Проводим из центра окружности - точки О к точке B прямую. Треугольники OBC и OAB равны по катету (катет OC = OA = r, также угол OCB = OAB, т.к. радиус, проведённый в точку касания, перпендикулярен касательной, гипотенуза OB - общая). Из равенства треугольников следует, что угол COB = OAB = 60° => угол CBO = ABO = 90° - 60° = 30° => OC = 1/2 CB, т.к. против угла в 30° лежит катет, равный половине гипотенузы, значит, CB = AB = 8 см. Pocba = 4см + 4см + 8см + 8см = 24см.
Рисунок через редактор у меня вставить не получается, но... Проводим из центра окружности - точки О к точке B прямую. Треугольники OBC и OAB равны по катету (катет OC = OA = r, также угол OCB = OAB, т.к. радиус, проведённый в точку касания, перпендикулярен касательной, гипотенуза OB - общая). Из равенства треугольников следует, что угол COB = OAB = 60° => угол CBO = ABO = 90° - 60° = 30° => OC = 1/2 CB, т.к. против угла в 30° лежит катет, равный половине гипотенузы, значит, CB = AB = 8 см. Pocba = 4см + 4см + 8см + 8см = 24см.
∠BAM=∠DAM (AM - биссектриса ∠BAD)
∠BMA=∠DAM (накрест лежащие при BC||AD)
∠BAM=∠BMA, △ABM - равнобедренный, AB=BM
Аналогично CD=CK
AB=CD => BM=CK => BK=CM
△APD~△MPK (по двум углам)
AD/MK=AP/PM =3/2
AD=BC =MK+2BK
MK= 2/3 AD => 2BK= 1/3 AD => AB =BK+MK =5/6 AD => BC= 6/5 AB =18