Центр окружности, описанной около прямоугольника, - это точка пересечения его диагоналей, а радиус - половина диагонали.
Тогда диагональ:
d = 2R = 2 · 7,5 = 15 см.
Пусть х - одна часть, тогда стороны 3х и 4х.
Две смежные стороны и диагональ образуют прямоугольный треугольник. По теореме Пифагора:
d² = (3x)² + (4x)²
9x² + 16x² = 225
25x² = 225
x² = 9
x = 3 (x = - 3 не подходит по смыслу задачи)
3 · 3 = 9 см - одна сторона
3 · 4 = 12 см - другая сторона прямоугольника.
P = (9 + 12) · 2 = 21 · 2 = 42 см
Треугольник АВс, М - точка касания на АВ, К - точка касания на ВС, Н- точка касания на АС, АМ=14. ВМ=12
АМ=АН =14 как касательные ко кружности, проведенные из одной точки,
ВМ=ВК=12,
АМ+АН+ВМ+ВК+СК+СН=периметр=84
14+14+12+12+СК+СН=84
84-52 = СК+СН, СК=СН=16,
АВ=26, ВС=28 АС=30
Площадь = корень (p x (p-a) x (p-b)x (p-c))?где р -полупериметр, остальное стороны
полупериметр = 84/2=42
Площадь= корень(42 х (42-26) х (42 х 28) х (42-30)) = корень (42 х 16 х 14 х 12) = 336