Рассмотрим цилиндр сверху и увидим круг, где осевое сечение - это диаметр круга, а другое параллельно ему. Рассмотрим треугольник, образованный этим сечением (обозначим длину за а) и двумя радиусами. Мы знаем также его высоту - половина радиуса. По теореме Пифагора: r² = (a/2)² + (r/2)² = a²/4 + r²/4 a²/4 = 3r²/4 a² = 3r² a = √3r Теперь возвращаемся к третьему измерению, рассматриваем весь цилиндр. Пусть его высота h, тогда площадь этого сечения будет: S = ah = √3rh А площадь осевого сечения (назовём S0): S0 = 2r*h Значит rh = S/√3 И S0 = 2*S/√3
1. Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1. S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r. значит можно. 2. Не может. k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ . Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂. CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃. DB =BE ⇒k₂ =2k₁ ; EC =CF ⇒k₃ =2k₂ =4k₁ . AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁ ⇒ AB+BC< AC ,что невозможно.
Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂. DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.
Площадь основания
S = πr² = π*3² = 9π м²
Объём конуса
М = 1/3*S*h = 1/3*9π*4 = 12π м³