В прикрепленном файле показан "вид сверху" на прямоугольник MNBA. Треугольник АВС наклонен (вершина С БЛИЖЕ к нам, чем плоскость прямоугольника) Размеры взяты в скобки, потому что соответствуют наклонным отрезкам. Рядом показан вид сбоку, на треугольник ВСМ.
Задачка упрощается благодаря тому, что 5,12,13 - пифагоровы числа, то есть АВС - прямоугольный тр-к, то есть проекция С1 лежит на BN (я сразу так и нарисовал). Нам надо найти угол СВМ в треугольнике СВМ, это и будет искомый двугранный угол (плоскость СВМ перпендикулярна АВ, потому что АВС - прямоугольный треугольник, а МВ - по условию, MNBA - прямоугольник).
Но СВМ - тоже прямоугольный треугольник (стороны 9, 12 и 15, опять пифагоровы числа). Поэтому, сразу ответ -
arcsin(3/5)
Если бы С1 не попадала на сторону ВМ, и если бы СМВ тоже не был бы прямоугольным, задача усложнялась бы, но не так, чтобы очень :) - всё сводилось бы к применению теоремы косинусов в двух треугольниках с заданными сторонами.
Если известны стороны! Проведем две медианы к боковым сторонам треугольника. Так как он равнобедренный, медианы эти равны и отсекают от исходного треугольника два меньших, равных между собой. Угол при основании неизвестен, поэтому обозначим его α и его косинус - cosα Выразим медиану одного из образовавшихся треугольников по теореме косинусов. Чтобы найти косинус угла при основании, применим теорему косинусов к данному в условии задачи треугольнику, стороны которого известны. Подставив найденное значение cosα в уравнение медианы, найдем ее длину.
В прикрепленном файле показан "вид сверху" на прямоугольник MNBA. Треугольник АВС наклонен (вершина С БЛИЖЕ к нам, чем плоскость прямоугольника) Размеры взяты в скобки, потому что соответствуют наклонным отрезкам. Рядом показан вид сбоку, на треугольник ВСМ.
Задачка упрощается благодаря тому, что 5,12,13 - пифагоровы числа, то есть АВС - прямоугольный тр-к, то есть проекция С1 лежит на BN (я сразу так и нарисовал). Нам надо найти угол СВМ в треугольнике СВМ, это и будет искомый двугранный угол (плоскость СВМ перпендикулярна АВ, потому что АВС - прямоугольный треугольник, а МВ - по условию, MNBA - прямоугольник).
Но СВМ - тоже прямоугольный треугольник (стороны 9, 12 и 15, опять пифагоровы числа). Поэтому, сразу ответ -
arcsin(3/5)
Если бы С1 не попадала на сторону ВМ, и если бы СМВ тоже не был бы прямоугольным, задача усложнялась бы, но не так, чтобы очень :) - всё сводилось бы к применению теоремы косинусов в двух треугольниках с заданными сторонами.