1-ое задание- 1)54°+36°=90° 180°-90°=90° - сумма углов треугольника равна 180 градусам 2)42°+78°=120° 180°-120°=60° - тоже самое.↑ 3)65°+35°=100° 180°-100°=80° - тоже самое.↑ 4)120°+33°=153° 180°-153°=27° 2-ое задание 1)180°-40°=140° 140°/2=70° - углы при основании равны 2)180°-60°=120° 120°/2=60° - тоже самое ↑ 3)180°-100°=80° 80°/2=40° - тоже самое ↑
3-е задание Пусть первый угол будет X градусов, второй (X+30) градусов, а третий (X-30). Сумма углов треугольника равна 180 градусам, тогда имеем формулу вида- X+X+30°+X-30°=180° 3X=180° X=180°/3 X=60° 1-ый угол 60°+30°=90° - 2-ой угол 60°-30°=30° - 3-ий угол Проверка: 60°+30°+90°=180°
1-ое задание- 1)54°+36°=90° 180°-90°=90° - сумма углов треугольника равна 180 градусам 2)42°+78°=120° 180°-120°=60° - тоже самое.↑ 3)65°+35°=100° 180°-100°=80° - тоже самое.↑ 4)120°+33°=153° 180°-153°=27° 2-ое задание 1)180°-40°=140° 140°/2=70° - углы при основании равны 2)180°-60°=120° 120°/2=60° - тоже самое ↑ 3)180°-100°=80° 80°/2=40° - тоже самое ↑
3-е задание Пусть первый угол будет X градусов, второй (X+30) градусов, а третий (X-30). Сумма углов треугольника равна 180 градусам, тогда имеем формулу вида- X+X+30°+X-30°=180° 3X=180° X=180°/3 X=60° 1-ый угол 60°+30°=90° - 2-ой угол 60°-30°=30° - 3-ий угол Проверка: 60°+30°+90°=180°
Сумма острых углов прямоугольного треугольника всегда равна 90°
угол ВАС = 90° - 60° = 30°
2) CD - биссектриса угла АСВ =>
угол АCD = угол ВСD = 1/2 × ACB = 1/2 × 60° = 30°
3) Рассмотрим ∆ АCD:
угол DAC = угол ACD = 30°
Значит, ∆ АСD - равнобедренный =>
АD = CD = 5 см
4) Рассмотрим ∆ BCD ( угол СВD = 90° ):
" Катет, лежащий против угла в 30°, равен половине гипотенузы "
BD = 1/2 × CD = 1/2 × 5 = 2,5 см
Значит, АВ = AD + BD = 5 + 2,5 = 7,5 см
ОТВЕТ: 7,5 см