1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.
В данном треугольнике углы при МР равны, и потому треугольник - равнобедренный с равными МК+КР.
Биссектриса к МК делит эту сторону пополам, значит, она является и медианой. В таком случае МР=КР
Но по условию и КР=МК.
Если КР=МК=МР, то треугольник - равносторонний и все углы в нем равны 60°
Биссектриса в нем не только и медиана, но и высота.
Можно по формуле высоты ( можно и по теореме Пифагора), определить сторону.
Можно и через синус 60°
МР=9,6:sin(60°)
МР=9,6: √3/2
МР=9,6·2:√3=19,2·√3:√3·√3=19,2·√3:3=6,4·√3
ответ:6,4·√3
Пусть АЕ = х → ED = AD – AE = 24 – x
Рассмотрим ∆ АСК (угол АКС = 90°):
По теореме Пифагора:
АС² = АК² + СК²
СК² = 13² – ( х + 8 )² = 169 – ( х² + 16х + 64 ) = 169 – х² – 16х – 64 = – х² + 105 – 16х
Рассмотрим ∆ BDE (угол BED = 90°):
По теореме Пифагора:
BD² = BE² + ED²
BE² = ( 5√17 )² – ( 24 – x )² = 25·17 – ( 576 – 48x + x² ) = 425 – 576 + 48x – x² = – x² – 151 + 48x
Высоты трапеции равны: ВЕ = СК →
ВЕ² = СК²
– х² + 105 – 16х = – x² – 151 + 48x
48х + 16х = 151 + 105
64х = 256
х = 4 см
Значит, АЕ = 4 см , ЕК = 8 см, КD = 12 см.
Также можно заметить, что АК = KD = 12 см. Значит, ∆ ACD – равнобедренный, где AC = CD = 13 см, CK – высота, медиана, биссектриса.
Рассмотрим ∆ АСК (угол АКС = 90°):
По теореме Пифагора:
СК² = 13² – 12² = 169 – 144 = 25
Значит, СК = ВЕ = 5 см.
Площадь трапеции равна:
S abcd = ( 1/2 ) · ( BC + AD ) · CK = ( 1/2 ) · ( 8 + 24 ) · 5 = ( 1/2 ) · 32 · 5 = 16 · 5 = 80 см²
ОТВЕТ: S abcd = 80 см².