М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Лена17617
Лена17617
07.07.2022 10:09 •  Геометрия

Основание пирамиды - ромб с большей диагональю d и острым углом альфа. все двугранные углы при основании пирамиды равны бета. найдите площадь боковой поверхности пирамиды.

👇
Ответ:
greghs
greghs
07.07.2022

Пусть AC - большая диагональ ромба; AC = d и острый угол \tt \angle BAD=\alpha. Диагонали ромба являются биссектрисами его углов, пересекаются под прямым углом и в точке пересечения делятся пополам.

\tt AO=OC=\dfrac{AC}{2}=\dfrac{d}{2};~~~\angle BAO=\angle OAD=\dfrac{\alpha}{2}

Из прямоугольного треугольника AOD: \tt \cos \angle OAD=\dfrac{OA}{AD} отсюда выразим AD: \tt AD=\dfrac{OA}{\cos \angle OAD}=\dfrac{d}{2\cos\frac{\alpha}{2}}=\dfrac{d}{2\cos\frac{\alpha}{2}}


Площадь ромба равна S = a*h, с другой стороны: S = a²*sinα, приравнивая площади, получим h = a * sin α, где а - сторона ромба.

\tt h=AD\cdot\sin\alpha=\dfrac{d\sin\alpha}{2\cos\frac{\alpha}{2}} - высота ромба.

Высота ромба является диаметром вписанной окружности в ромб, тогда радиус вписанной окружности равен \tt r=OK=\dfrac{h}{2}=\dfrac{d\sin\alpha}{4\cos\frac{\alpha}{2}}


Рассмотрим теперь прямоугольный треугольник SOK и найдем в нем SK - апофему пирамиды: \tt \cos \beta=\dfrac{OK}{SK}~~\Rightarrow~~~ SK=\dfrac{OK}{\cos \beta}=\dfrac{d\sin\alpha}{4\cos\frac{\alpha}{2}\cos\beta}


Найдем теперь площадь боковой поверхности пирамиды

\tt S_{bok}=\dfrac{1}{2}\cdot P_{OCH}\cdot SK=\dfrac{1}{2}\cdot 4\cdot\dfrac{d}{2\cos\frac{\alpha}{2}}\cdot\dfrac{d\sin\alpha}{4\cos\frac{\alpha}{2}\cos\beta}=\dfrac{2d^2tg\frac{\alpha}{2}}{\cos\beta}


Основание пирамиды - ромб с большей диагональю d и острым углом альфа. все двугранные углы при основ
4,4(51 оценок)
Открыть все ответы
Ответ:
nikitasonar
nikitasonar
07.07.2022
Любая вписанная трапеция равнобокая, так как углы, опирающиеся на одну дугу, должны быть равны. Обозначим основания трапеции за 2x и 2y. Тогда средняя линия равна (2x + 2y)/2 = (x + y),

Уравнения:
\begin{cases}
\dfrac{\sqrt{100-x^2}}{\sqrt{100-y^2}}=\dfrac43\\
x+y=\sqrt{100-x^2}+\sqrt{100-y^2}
\end{cases}

Решаем первое уравнение.
\dfrac{\sqrt{100-x^2}}{\sqrt{100-y^2}}=\dfrac43\\
\dfrac{100-x^2}{100-y^2}=\dfrac{16}9\\
100-x^2=\dfrac{1600}9-\dfrac{16}9y^2\\
x^2=\dfrac{16}9y^2-\dfrac{700}9

Подставляя во второе уравнение и немного мучаясь, можно получить ответ x = 6, y = 8.

Уравнения будут выглядеть немного лучше, если обозначить куски высоты как 4x и 3x. Тогда уравнение будет выглядеть следующим образом:
2(\sqrt{100-16x^2}+\sqrt{100-9x^2})=7x\\
4(200-25x^2+2\sqrt{(100-16x^2)(100-9x^2)})=49x^2\\
x^2=t:\quad 149t-800=2\sqrt{100^2-25t+144t^2}\\
\dots
Получающееся квадратное уравнение радует количеством вычислений.

Наконец, можно обозначить неизвестными углы 
H1CO = x и H2DO = y
Тогда система получится простой:
\begin{cases}
4\sin x=3\sin y\\
\cos x+\cos y=\sin x+\sin y
\end{cases}
Но решать её всё равно неинтересно.

ответ. 12, 16.

Центр окружности, описанной около трапеции, делит ее высоту в отношении 3: 4. найти основания трапец
4,7(82 оценок)
Ответ:
Panda511111
Panda511111
07.07.2022
P = 2x + y  (x - боковые стороны, y - основание) 
y = 96, P = 196 - дано в условии, найдем x
2X=P-y
x= (P-y)/2
x=50

итого: x = 50, y = 96 
нам не хватает высоты, для нахождения площади. 
Проведем высоту и рассмотрим половинку этого равнобедренного треугольника, где гипотенуза - x, а прилежащий катет - y/2 (т.к высота в равнобедренном треугольника - медиана) 
по теореме Пифагора 
h = √(x^2 - (y/2)^2)
h = √(50^2 - 48^2) =  √196 = 14

Площадь треугольника: половина основания на высоту, основание - y, высота - h 
тогда: S=1/2*hy = 96*14/2 = 672.
ответ: 672 
4,8(28 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ