М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
tipichnayapanda
tipichnayapanda
29.04.2023 07:59 •  Геометрия

Визначити вид трикутника та знайти косинуси

👇
Открыть все ответы
Ответ:
momreomgr
momreomgr
29.04.2023
В прямоугольном треугольнике катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Значит, катет равен 18:2 = 9.
Если один острый угол прямоугольного треугольника равен 45, то второй тоже равен 45, т.к. сумма острых углов в прямоугольном треугольнике равна 90 градусов.Треугольник равнобедренный. Если один катет равен 8, то и второй равен 8.Если сумма катетов 28 и они равны, то каждый катет равен 28:2 = 14.В прямоугольном равнобедренном треугольнике медиана вершины угла равна биссектрисе и высоте. А медиана из прямого угла в прямоугольном треугольнике равна половине гипотенузы.Значит х+2х=21. Отсюда х=7  2х=14.Гипотенуза равна 14, высота равна 7.
4,8(47 оценок)
Ответ:
Пусть О - точка пересечения медиан треугольника АВС. Треугольники AOP и BOM подобны по двум  углам (два угла равны по условию, еще два угла вертикальные). Тогда:
\frac{AO}{OB} = \frac{PO}{OM}
Так как медианы точкой пересечения делятся в отношении 2:1, то:
\frac{ \frac{2}{3} AM}{ \frac{2}{3} BP} = \frac{\frac{1}{3}BP}{\frac{1}{3}AM}
\\\
\frac{ AM}{ BP} = \frac{BP}{AM}
\\\
AM^2=BP^2
\\\
\Rightarrow AM=BP=1
Если медианы, проведенные к двум сторонам треугольника равны, то и сами стороны также равны. Значит, АС=ВС и треугольник АВС равнобедренный.
Рассмотрим треугольник АМС. По теореме косинусов, учитывая соотношение АС=2СМ, получим:
AM^2=AC^2+CM^2-2\cdot AC\cdot CM\cdot\cos ACB
\\\
1^2=(2CM)^2+CM^2-2\cdot 2CM\cdot CM\cdot0.8
\\\
1=4CM^2+CM^2-3.2CM^2
\\\
1=1.8CM^2
\\\
CM^2= \frac{1}{1.8} = \frac{5}{9} 
\\\
CM= \frac{ \sqrt{5} }{3}
Следовательно стороны в два раза больше: AC=BC= \frac{2 \sqrt{5} }{3}
Тогда площадь треугольника найдем как половину произведения двух его сторон на синус угла между ними:
S= \frac{1}{2} \cdot AC\cdot BC\cdot \sinACB
\\\
S= \frac{1}{2} \cdot AC^2\cdot \sqrt{1-\cos ACB} 
\\\
S= \frac{1}{2} \cdot ( \frac{2 \sqrt{5} }{3})^2\cdot \sqrt{1-0.8}=\frac{1}{2} \cdot \frac{4\cdot5 }{9} \cdot \frac{3}{5} = \frac{2}{3}
ответ: 2/3
4,4(4 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ