проведем через точку М, пряммую перпендикулярную АD, так как AD||BC, то она будет перпендикулярна и прямой ВС, пусть пряммую AD она пересекает в точке L, а пряммую BC в точке K.
Тогда LM - высота параллелограмма ABCD, LM - высота треугольника ADM, KM - высота треугольника BCM.
Площадь парарлелограмма равна произведению его стороны на высоту, проведенную к этой стороне
Площадь треугольника равна половине произведения стороны на высоту провдеенной к этой стороне
Поэтому
S(AMD)+S(BMC)=1/2*AD*LM+1/2*BC*KM=так противоположные стороны парарлелограмма равны=
=1/2*AD*LM+1/2*AD*KM=1/2*AD*(LM+KM)=1/2*AD*LK=1/2*S(ABCD), что и требовалось доказать
Площадь треугольника равна половине произведения его высоты на сторону, к которой проведена. Сторона, к которой проведена высота, равна 3+12=15 м. Высоту нужно найти. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒ h²=3*12=36 h=√36=6 (м) Ѕ=h*a:2 S=6*15:2=45 м² Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы: Р=a+b+c а=√(3*15)=3√5 м b=√(12*15)=6√5 м Р=15+9√5 (м) Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.
проведем через точку М, пряммую перпендикулярную АD, так как AD||BC, то она будет перпендикулярна и прямой ВС, пусть пряммую AD она пересекает в точке L, а пряммую BC в точке K.
Тогда LM - высота параллелограмма ABCD, LM - высота треугольника ADM, KM - высота треугольника BCM.
Площадь парарлелограмма равна произведению его стороны на высоту, проведенную к этой стороне
Площадь треугольника равна половине произведения стороны на высоту провдеенной к этой стороне
Поэтому
S(AMD)+S(BMC)=1/2*AD*LM+1/2*BC*KM=так противоположные стороны парарлелограмма равны=
=1/2*AD*LM+1/2*AD*KM=1/2*AD*(LM+KM)=1/2*AD*LK=1/2*S(ABCD), что и требовалось доказать