1) Высота правильной пирамиды проходит через СЕРЕДИНУ её основания. Основанием правильной четырёхугольной ПИРАМИДЫ служит КВАДРАТ. Его центр совпадает с точкой пересечения ДИАГОНАЛЕЙ, которая является СЕРЕДИНОЙ каждой из диагоналей квадрата.
Найдём координаты точки Н - середины ДИАГОНАЛИ АС:
Итак, Н(7,7,1) .
Вычислим высоту МН пирамиды:
2) Апофема правильной пирамиды - это отрезок, соединяющий ВЕРШИНУ пирамиды с СЕРЕДИНОЙ стороны основания. Найдём координаты точки Р - середины СТОРОНЫ основания АВ:
Итак, Р(3,4,1) . Следовательно,
3) Площадь боковой поверхности правильной пирамиды равна ПОЛОВИНЕ произведения ПЕРИМЕТРА основания и апофемы пирамиды. Найдём сторону АВ - СТОРОНУ ОСНОВАНИЯ пирамиды:
ВЫЧИСЛИМ ПЕРИМЕТР ПИРАМИДЫ: .
Вычислим площадь боковой поверхности пирамиды:
Треугольник прямоугольный с углом 45, следовательно и второй угол =45. То есть треугольник равнобедренный. Отсюда, по теореме Пифагора его диагональ АС=а*(корень из2). Основание цилиндра это окружность радиусом R=АС/2. Поскольку центр окружности описанной около прямоугольного треугольника лежит на середине гипотенузы. Отсюда R=а*(корень из 2)/2. Обозначим призмуАВСА1В1С1. Проведём диагональ большей грани АС1. По условию угол С1АС=60. Тогда высота призмы и цилиндра Н=СС1=АС*tg60=а*(корень из 2)*(корень из 3)=а*(корень из 6). Тогда объём цилиндра V=пи*(R квадрат)*Н=пи*((а*(корень из 2)/2)квадрат*а*(корень из 6)=пи(а куб)*(корень из 6)/2.