Окружность называется вписанной в треугольник, если она касается всех его сторон.
Общие точки окружности и треугольника называются точками касания.
Запись окр. (O; r) читают: «Окружность с центром в точке O и радиусом r».
На рисунке окр. (O; r) — вписанная в треугольник ABC.
M, K, F- точки касания.
Свойства вписанной в треугольник окружности.
1) Центр вписанной в треугольник окружности является точкой пересечения биссектрис этого треугольника.
AO, BO, CO — биссектрисы треугольника ABC.
2) Отрезки соединяющие центр вписанной окружности с точками касания, перпендикулярны сторонам треугольника (как радиусы, проведенные в точку касания):
3) Вписанная в треугольник окружность делит стороны треугольника на 3 пары равных отрезков.
Если каждая грань - ромб, то один острый угол верхнего основания совпадает с двумя тупыми углами боковых граней.
Так как ромб боковой грани расположен своей стороной на основании, то вершина его тупого угла находится на высоте ромба.
Высота ромба h = a*sin φ.
Проекция стороны ромба на основание равна a*cos φ.
Проекция высоты ромба на основание равна:
hп = a*cos φ*tg(φ/2).
Угол делится пополам из за симметрии верхнего основания по отношению к нижнему.
Отсюда по Пифагору находим высоту призмы.
H = √(h² - (hп)²) = √(a²*sin²φ - a²*cos²φ*tg²(φ/2)) = a√(sin²φ - cos²φ*tg²(φ/2)).