М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Odessey20011
Odessey20011
24.01.2020 08:57 •  Геометрия

Впрямоугольнике abcd длина стороны ab равна 6 см. найдите длину стороны cd

👇
Ответ:
8HELP8
8HELP8
24.01.2020
CD = 6 см, у прямоугольника противоположные стороны равны
4,4(20 оценок)
Открыть все ответы
Ответ:
isheh09ow2mth
isheh09ow2mth
24.01.2020

Рассмотрим произвольный треугольник ABC, в котором AH является как медианой, так и высотой. Докажем, что он является равнобедренным.

I)В нём этот отрезок будет являться частью срединного перпендикуляра к стороне BC, поэтому по теореме о срединном перпендикуляра к отрезку, AB=AC как расстояния от точки A, лежащей на нём до точек B и C, т.е. треугольник ABC является равнобедренным по определению, что и требовалось доказать.

II)Высота разделяет этот треугольник на два прямоугольных: HAB и HAC. Они равны по двум катетам: катет AH - общий, катеты BH и CH равны как отрезки, на которые медиана делит противоположную сторону. Из равенства этих треугольников следует и равенство их 1) соответственных углов: <ABC=<ACB, поэтому рассматриваемый треугольник является равнобедренным по признаку равнобедренного треугольника, что и требовалось доказать; 2) соответственных сторон: AB=AC, поэтому рассм. тр. является равноб. по определению, что и требовалось доказать.

III)В рассматриваемом треугольнике в прямоугольных треугольниках HAB и HAC по теореме Пифагора AB=\sqrt{BH^2+AH^2} и AC=\sqrt{CH^2+AH^2}, Но по условию BH=CH, поэтому AB=AC, т.е. рассм. тр. - равноб. по определению, ч. т. д.

 

 

4,7(94 оценок)
Ответ:
zalikmap08ic7
zalikmap08ic7
24.01.2020
Рассмотрим любой не равнобедренный треугольник АВС, у которого высота и медиана из точки В совпадают. Обозначим этот отрезок BD.
Рассмотрим треугольники ABD и CBD.
* Они прямоугольные, т.к. ВD - высота.
* AD=CD т.к. BD - медиана, делит AC пополам.
* ВD - общая сторона
Следовательно, треугольники равны по двум катетам.
У равных треугольников соответствующие величины равны, значит, AB=BC, а значит треугольник равнобедренный.
Итог: изначально мы предположили, что данный треугольник не равнобедренный, и доказали обратное. Значит, любой треугольник с совпадающей высотой и медианой - равнобедренный. Что и требовалось доказать.

Докажите, что если медиана треугольника совпадает с его высотой, то треугольник равнобедренный. 1 пу
4,6(30 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ