Длина двух сторон равнобедренного треугольника составляет 5 см и 7 см. Какой может быть периметр этого треугольника?
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Решение :Равнобедренный треугольник - это такой треугольник, две стороны которого равны между собой.Для выполнения задания также необходимо учесть и неравенство треугольника (каждая сторона треугольника меньше суммы двух других сторон).
Допустим, что основание равно 5 см, тогда боковые стороны равны по 7 см.
"Проверяем" каждую сторону -
7 см + 7 см > 5 см - верное неравенство.
7 см + 5 см > 7 см - верное неравенство.
7 см + 5 см > 7 см - верное неравенство.
Как видим, все неравенства верны, следовательно, такой треугольник существует. Тогда его периметр (сумма длин всех сторон) равен 5 см + 7 см + 7 см = 19 см.
Теперь допустим, что основание равно 7 см, тогда боковые стороны равны по 5 см.
Аналогично -
5 см + 5 см > 7 см - верное неравенство.
7 см + 5 см > 5 см - верное неравенство.
7 см + 5 см > 5 см - верное неравенство.
Неравенства верны, треугольник существует. Тогда его периметр равен 5 см + 5 см + 7 см = 17 см.
ответ : 19 см и 17 см.Известно, что сумма всех углов параллелограмма 360 градусов, а сумма углов, прилежащих к одной стороне – 180 градусов, значит разность в 40 градусов может быть именно у углов, прилежащих к одной стороне. Вот их сначала и вычисляем. Х – 1-й угол (180 – х) – 2-й угол Так как разность этих углов 40 градусов, то составляем уравнение: х – (180 – х) = 40 х – 180 + х = 40 2х = 220 х = 110 (это первый угол) 180 – 110 = 70 (это 2-й угол) Так как известно, что противоположные углы параллелограмма равны, то углы данного параллелограмма 110 градусов, 110 градусов, 70 градусов, 70 градусов.
ответ и пояснения к нему во вложении