Рассмотрим треугольник МРВ. В нем МР=РВ и уг.МРВ=гр по условию. Значит этот треугольн-и)/равнобедренный и углы при основании МВ равны. т.е. уг.ВМР=уг.РВМ=(180-60)/2=60гр. получается все углы равны, значит треугольник равносторонний. Таким образом: уг.НМР=уг.НКР=60гр. - противолежащие углы параллелограмма. сумма углов прилежащих к одной стороне =180гр. уг.КРМ=уг.КНМ= 180-60=120гр. Рассмотрим треуг. АКН. КН=РМ- противоположные стороны параллелограмма АК=КН т. к. АК=РМ по условию. Значит треугольник равнобедренный уг.КАН=уг.КНА=(180-60)/2=60гр. Раз все углы треугольника равны, значит треуг.АКН-равносторонний и АН=АК. Т. к. АК=ВМ-по условию, то и АН=ВМ.
1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)