

, где а - сторона шестиугольника и любого из правильных треугольников. Зная площадь шестиугольника, мы находим, что
. Каждая сторона шестиугольника стягивает дугу в 360\6= 60 градусов. А каждая сторона квадрата стягивает 360\4=90 градусов. Составим отношение: 60\а=90\б, где б - сторона квадрата. Выразим б. б=90а\60=
. Площадь квадрата - это квадрат его стороны, поэтому его площадь будет равна 18.
Чтобы доказать,что данная фигура является квадратом,нужно,чтобы стороны были попарно параллельны и длина каждой стороны должна быть одинаковой. P.S. С данными точками четырехугольник не является квадратом. Ты скорее всего потерял(а) в точке C знак минус, то есть C(0,-8).
Для начала найдём векторы сторон,из которых состоит наш четырехугольник:(так как на сайте нет стрелочек над векторами,буду писать слово вектор или сочетание вершин например АВ)
Вектор AB = {-8-(-2);-2-6}={-6;-8}
Вектор BC = {0-8;-8-(-2)}={8;-6}
Вектор CD = {6-0;0-(-8)}={6;8}
Вектор DA = {(-2)-6;6-0)}={-8;6}
Чтобы проверить параллельны ли вектора,они должны быть коллинеарными,то есть отношения их координат должны быть равны одинаковому значению (назовем его k):
AB||CD? -
.Следовательно AB||CD.
BC||DA? -
. Следовательно BC||DA.
Теперь посчитаем длины векторов(Достаточно будет посчитать длины 2-х векторов,так как векторы коллинеарны):
|AB|=
= |CD|
|BC|=
= |DA|
Так как |AB|=10 и |BC|=10, то все четыре стороны равны. Следовательно,учитывая коллинеарность векторов и одинаковые длины, данный четырехугольник является квадратом.