3)Пусть сторона квадрата равна x. Тогда по теореме Пифагора x² +x² = (4√2)² 2x² = 16*2 x² = 16 x = 4
4) Пусть неизвестная сторона прямоугольника равна x. Тогда по теореме Пифагора x² +8² = 17² x² = 17²-8²=289 - 64 = 225 x = 15 Тогда периметр прямоугольника равен: P = (15 + 8)*2 = 46
5) Из вершины С опустим высоту CH. Она будет равна стороне трапеции AC. ABCH - прямоугольник. Тогда AH = BC. HD = AD - BC = 8,5 - 4 = 4,5. По теореме Пифагора из треугольника HCD получим: CD² = CH² +HD² 7,5² = CH² + 4,5² CH² = 7,5²- 4,5² = (7,5-4,5)*(7,5+4,5) = 3*12 = 36 CH = 6 Т. к. AB = CH, то AB = 6.
Если хорошенько разобраться, решается все очень просто)
В основании пирамиды лежит равносторонний тр-к. его высоты, медианы и биссектрисы равны и точкой пересечения делятся в отношении 1/2. т. к бОльшая часть будет являться радиусом описанной окружности а меньшая часть - радиус вписанной окружности. обозначим основание тр-к АВС. точка пересечения высот О. вершина пирамиды - Н, высота АА1. ОН по условию =АА1 =9 ОА1= 1/3 АА1= 9/3=3
рассмотрим тр-к НОА1 НА1(апофема) = корень из (9*9+3*3)= корень из 90
Да, это называется неравенством треугольника: сумма двух сторон треугольника больше третьей стороны