Диагональ делит параллелограмм на 2 равных треугольника. Считаем площадь одного, умножаем на 2 и - вуаля! (площадь треугольника считаем по формуле S = a*b*sin(C)/2). Окончательно
S = 14*8,1*(1/2) = 56,7.
Ну хорошо, поступила без синусов. Тогда так. Из вершины диагонали, которая НЕ общая с заданной стороной, опускаем перпендикуляр на эту сторону. Это - высота параллелограмма (и того треугольника, про который я говорил - тоже, но это не важно). У нас получился прямоугольный треугольник, у которого острый угол 30 градусов, а высота - противолежащий катет (углу в 30 градусов). Поэтому высота равна половине гипотенузы этого треугольника, то есть - в данном случае - диагонали параллелограмма. То есть высота параллелограмма равна 14/2 = 7.
S = 7*8,1 = ... ну, вы уже в курсе :
В ромбе обозначаем точку пересечения диагоналей буквой О.
Рассмотрим треугольник AOB:
1.Этот треугольник прямоугольный, т.к. диагонали перпендикулярны друг к другу.
2.Угол BOA=30°, противолежащий катет(OB) равен половине гипотенузы (AB).
3. BD=20 см, диагонали в точку пересечения делятся пополам, значит OB=DO=10 см.
4. AB=20 (смотри 2 и 3).
Зная сторону ромба, можно найти периметр:
P=a*4
P=20*4
P=80 см.