№1. Треугольники ВКМ и BKN равны по стороне и двум прилежащим углам.
Значит BM = BN. Значит тр-ки BMN и АВС подобны по 1 признаку подобия(по 2-м пропорциональным сторонам и углу между ними.)
Значит у них равны все углы, то есть MN||АС, значит MN перпендикулярно ВК,
что и требовалось доказать.
Угол BNK = углу BMK = 110 град. (из равенства тех же тр-ов: BKM и BKN).
№2. Во влажениях!
№3. В Δ АВС угол АВС равен
90-15=75°
ВΔ ВАД угол АВД равен
75-15=60
ВДА=90-60=30°
АВ, как противолежащая углу 30, равна половине ВД.
ВД=2*3=6 см
Рассмотрим Δ ВДС.
В нем равные углы при основании ВС.
Поэтому Δ ВДС - равнобедренный.
ДС=ВД=6 см.
Сумма двух сторон треугольника должна быть больше третьей стороны.
Сторона ВД+ДС=12см
ВС < 12см
Длина стороны ВС не может быть равна 12 см
Тогда другая х+4
Составим уравнение по условию
х+х+х+4+х+4=76
4х=76-4-4
4х=68
х=68/4=17 см одна сторона
значит другая x+4=17+4= 21 см.