Воснові піраміди лежить прямокутний трикутник з гострим кутом 30° і прилеглим катетом 12 см кожне бічне ребро нахилене до основи під кутом 45° знайдіть висоту піраміди
Пусть BB' медиана стороны AC, тогда B'C=B'A=CA/2, откуда CA=2*B'C(1)По свойству медиан треугольника имеем: OB/OB' =2/1, или OB=2*OB', откуда OB'=OB/2 =10/2=5 где OB=10 по условию Тогда BB'=OB+OB'=10+5=15Из прямоугольного треугольника B'CB по теореме Пифагора найдем B'C = корень[(BB'^2)-(BC^2)]=корень[225-81]=корень[144]=12 где BC=9 по условию Подставим в (1) вместо B'C его значение, найдем CA: CA=2*12=24И, наконец, найдем искомую площадь S треугольника ABC: S=CA*BC/2=24*9/2=12*9=108
Дан ΔАВС. Периметр Р(АВС)=14 см. Продолжим сторону АС треугольника АВС за точки А и С , получим прямую ДЕ. Проведём биссектрису АК угла ВАД, а также биссектрису СМ угла ВСЕ. ВК⊥АК и ВМ⊥СМ Продолжим высоты ВК и ВМ до пересечения с ДЕ. На ДЕ получим точки Д и Е. Так как АК и СМ - биссектрисы и высоты одновременно в ΔАВД и ΔВСЕ, то эти треугольники равнобедренные ⇒ АВ=АД и ВС=СЕ. Высоты АК и СМ в равнобедренных треугольниках АВД и ВСЕ являются ещё и медианами , значит точка К - середина ВД, а точка М - середина ВЕ. Рассм. ΔВЕД: КМ - средняя линия ΔВЕД. ДЕ=ДА+АС+СЕ=АВ+АС+ВС=Р(АВС)=14 см Средняя линия треугольника равна половине стороны, параллельно которой она проходит, то есть КМ=1/2*ДЕ=1/2*14=7 см.
Если боковые рёбра пирамиды наклонены под одинаковым углом к основанию, то вершина пирамиды проецируется в центр описанной около основания окружности.
Для прямоугольного треугольника - это середина гипотенузы.
Поэтому боковая грань с основой на гипотенузе - вертикальна.
Высота пирамиды равна высоте этой грани. При угле наклона боковых рёбер к основанию в 45 градусов высота равна половине гипотенузы.
Н = (12/cos 30°)/2 = (12/(√3/2))/2 = 4√3 см.