оси Ох принадлежат точки, у которых у=0 и z=0
A(-4:0:0)
оси ОY принадлежат точки, у которых x=0 и z=0
C(0:2:0)
в) плоскости Оху принадлежат точки, у которых z=0
A(-4:0:0),B(5:-3:0),C(0:2:0),D(3:-6:0)
г)плоскости Оуz принадлежат точки, у которых x=0
C(0:2:0), E(0:0:-10),F(0:9:-7)
В правильной треугольной пирамиде высота основания равна h, боковые рёбра наклонены к основанию под углом α. Найти объём пирамиды.
===========================================================
В основании правильной треугольной пирамиды лежит правильный треугольник. Вершина такой пирамиды проецируется в центр основания. Центр правильного треугольника является точка О - точка пересечения бисссектрис, медиан и высот. СН = h , ∠ACB = αВ ΔАВС: Медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2:1, считая от вершины.СО:ОН = 2:1 ⇒ СО = 2•СН/3 = 2h/3В ΔСАН: sin60° = CH/AC ⇒ AC = CH/sin60° = CH/(√3/2) = 2h/√3В ΔСМО: tgα = MO/CO ⇒ MO = CO•tgα = 2h•tgα/3V пир. = (1/3)•Sabc•MO = (1/3) • (AC²•√3/4) • MO = (1/3) • (2h/√3)² • (√3/4) • (2h•tgα/3) = 2√3•h³•tgα/27ОТВЕТ: V = 2√3•h³•tgα/27
оси х принадлежит точка, если y=0 z=0...т А
оси у - если x=0 z=0 С
плоскости xy - если z=0 В D (а так же А и С:))
плоскости yz - если x =0 F (Е и С тоже)
странно, что такие вопросы занимают часы...