Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Ну, в треуг. к бОльшей стороне проводится мЕньшая высота. Док-во очень простое, логическое. Площадь треуг.- величина постоянная? Да. Тогда если брать произведение бОльшей стороны на какую-то высоту (1) и мЕньшую сторону на какую-то высоту (2), то понятно, что (1) должна быть меньше (2) Соответственно 10 - 9 15 - 6 18 - 5 Проверяя по площади, находим, что это так.
Но вот только неувязочка с задачей- высоты -то фейковые! Из решения получаем, что площадь треуг. будет, например , 10*9/2=45
А из сторон 15,18 и 10 по формуле Герона находим истинную площадь - приблизительно 75. Тем, кто составлял условие задачи - руки повыдергивать. Так учителю и скажи.