Есть теорема: "Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость". Отрезок CD имеет общую точку C с плоскостью АВС и общую точку D с плоскостью ABD. Через две точки можно провести только одну прямую, следовательно, прямая, содержащая отрезок СD, пересекает плоскость, содержащую треугольник АВС и плоскость, содержващую треугольник ABD. Значит любая прямая, параллельная СD, по приведенной теореме, также пересечет и плоскость АВС и плолскость ABD. Что и требовалось доказать.
Задание 1.
Возьмем точку А , К и Р, они образуют какую то плоскость (по определению: любые три точки не лежащие на одной прямой образуют плоскость),
2) так как К Р Т лежат на одной прямой , то Т так же лежит в плоскости ( по определению : если две точки прямой лежат в плоскости то все точки прямой лежат в этой плоскости) - следовательно раз К и Р лежат в одной плоскоси с А, то и Т так же будет лежать в одной плоскости с А.
Задание 2.
Аксиомы стереометрии. 1) через 3 точки, не лежащие на одной прямой, можно провести плоскость, и только одну. Проводим через А и любые две из оставшихся, например, M и N. Точка Р также лежит в этой плоскости, т.к 2) если две точки прямой лежат в плоскости, то вся прямая лежит в этой плоскости. Известное следствие из аксиом: через прямую и точку, не лежащую на ней всегда можно провести плоскость, и притом только одну.
Задание 3.
Через две прямые пересекающиеся в одной точке можно провести только одну плоскость. И если другие прямые пересекаются с вышеназванными прямыми, то они тоже находятся в одной с ними плоскости. А вот через точку можно провести любое колическво прямых и многие из них будут находиться в других плоскостях.
66
Объяснение:
14+14+19+19=х
28+38=х
66