Полученная фигура--пирамида , в основании которой лежит прямоугольный треугольник(ВСД-обозначим) , где ВС-гипотенуза . А--вершина пирамиды , АК--высота. Причём , К∈ВС и является центром описанной окружности основания , а в прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы, т. е. ВК=КС=8см. АК перпендикулярна ВС( высота). Из ΔАВК (угол К=90 град) по теореме Пифагора : АВ²=АК²+ВК² АВ²=8²+15²=64+225=289 АВ=√289=17(см) Точка А по условию задачи равноудалена от вершин Δ, значит АВ=АД=АС=17см
72 - угол при стороне и тк трап равнобедренный, то 72 *2 = 144°
Сумма углов в трапеции равна 360°
Значит, 360 - 144 = 216 - это сумма 2х оставшихся углов.
216/2 = 108