Т.к. треугольник ABC прямоугольный и равнобедренный то равны его катеты. A и С - острые углы треуг. ABC. острые углы, прилежащие к катетам, будут равны(по св-ву равнобедренного треугольника). Но т.к. сумма острых углов в прямоугольном треугольнике равна 90 градусов, то каждый острый угол треуг. ABC будет равен по 45 градусов.
Теперь рассмотрим треугольник ABH. он является прямоугольным т.к. угол H - прямой. один из острых углов треуг. ABH является острым углом треугольника ABC и равен 45 градусов. Следовательно второй острый угол треуг. ABH тоже равен 45 градусов.
ОТВет: 90, 45, 45
ответ:В задачах этого параграфа двугранный угол с ребром АВ, на разных гранях которого отмечены точки С и D, для краткости будем называть так: двугранный угол CABD.
Дано: ABCD - тетраэдр;
Определим линейную меру двугранного угла DACB.
ADC ⊥ пл. АВС, тогда двугранный угол DACB и соответствующий ему линейный угол DCB равны 90о.
Определим линейную меру двугранного угла DABC.
Проведем отрезок СМ ⊥ АВ, соединим точки М и D.
то по теореме о 3-х перпендикулярах,
По определению, ∠DMC - линейный угол двугранного угла DABC.
По теореме Пифагора:
Тогда
Отсюда
Определим линейную меру двугранного угла BDCA.
то ∠АВС - линейный угол двугранного угла
Объяснение: