М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
csczzz
csczzz
19.06.2020 08:59 •  Геометрия

Втреугольнике авс. угол а в 2 раза больше угла в и в з раза больше меньше угла с. найдите градусную меру угла а.

👇
Ответ:
darinchiiik
darinchiiik
19.06.2020

A=2B

C=3A=6B

B+2B+6B=9B=180 B=20

A=40

ответ 40 градусов

4,5(16 оценок)
Ответ:
vasnecovadaha
vasnecovadaha
19.06.2020

классно это "больше меньше" пусть будет просто "больше", с "меньше" и с "больше меньше" тогда сами, плз :)))

пусть  полугла С = x, тогда А = 6х, В = 3х; С=2х(само собой)

А+В+С = 180; 11х = 180; х = 180/11, А = 1080/11. Ну, за что продал.

 

а что будет с "меньше"? 

B = y, A = 2y, C = 6y тут числа выходять целые.

y = 20, А = 40..

 

случай "больше меньше" решать не буду :

4,4(28 оценок)
Открыть все ответы
Ответ:
murat121221
murat121221
19.06.2020
Положим что вершина равна S ,  SABCD правильная  пирамида .
ABC     правильный треугольник , тогда обозначим M-середину стороны AC.  N \in BC  
Получим сечение SMN
Положим что угол   SCE равен \alpha=a 
SE - апофема. 
BC=a\\
R=\sqrt{66}\\
 
Из прямоугольного треугольника SEC\\
SC=\frac{a}{2sina}\\
SE=\sqrt{\frac{a^2}{4sin^2a}-\frac{a^2}{4}}=\frac{a*ctga}{2}\\
         
O центра вписанной окружности в основание ABC , тогда по формуле OE=r=\frac{\sqrt{3}a}{6}  
OB=R=\frac{a\sqrt{3}}{3}.
Высота пирамидыSO совпадает  с центром вписанной окружности     
SH = \sqrt{\frac{a^2*ctg^2a}{4} - \frac{3*a^2}{36}} = \frac{a\sqrt{9*ctg^2a-3}}{6} 
По условию
\frac{SE}{SO}=\frac{3}{2\sqrt{2}}  
\frac{ \frac{a*ctga}{2} }{ \frac{a \sqrt{9 ctg^2a-3}}{6}} = \frac{3}{2\sqrt{2}} \\\\
 a=\frac{\pi}{6}+\pi\*n
n\inN 
То есть это Тетраэдр. 
Из радиус  сферы получим     по теореме  Пифагора 
 (\frac{a\sqrt{3}}{3})^2+(\sqrt{\frac{2}{3}}*a-\sqrt{66})^2=\sqrt{66}^2\\
\frac{3a^2}{9}+\frac{2a^2}{3}-2a\sqrt{44}=0\\\\
 9a^2=18a\sqrt{44}\\\\
 a=4\sqrt{11} 
Все грани равны a=4\sqrt{11} 
Положим что CN=x\\
 
Тогда по теореме косинусов получим 
ME=\sqrt{x^2-2x\sqrt{11}+44}\\
SM=\sqrt{(4\sqrt{11})^2-\frac{2\sqrt{11}}{2}^2} = 2\sqrt{33}\\
SN=\sqrt{x^2-4x\sqrt{11}+176} 
Зная все стороны найдем    угол   SMN  по теореме косинусов , затем выражая синус через косинус получим 
 sinSMN = \sqrt{1-\frac{x^2}{12(x^2-2\sqrt{11}x+44}}} 
 
 Площадь сечения  тогда равна 
 S_{SMN}=\frac{\sqrt{x^2-2x\sqrt{11}+44}*\sqrt{33}*\sqrt{1-\frac{x^2}{12(x^2-2\sqrt{11}x+44}} }{2}\\
 S_{SMN}=\frac{\sqrt{121x^2-264\sqrt{11}x+5808}}{2}
У этой функций минимум находится  в точке 
 x=\frac{12}{\sqrt{11}} 
 S_{SMN}=4\sqrt{66} 

Всферу радиусом √66 вписана правильная треугольная пирамида dabc(d-вершина) длина апофемы которой от
4,4(14 оценок)
Ответ:
Dfh32
Dfh32
19.06.2020
1) Дан прямоугольный треугольник АВС, угол С - прямой.
Высота  СК прямоугольного треугольника есть среднее пропорциональное между отрезками, на которые высота делит гипотенузу ( можно доказать из подобия двух  прямоугольных АСК и ВКС):
СК²=АК·ВК
АК=9х, ВК=16х
24²=9х·16х,
х²=4,
х=2
 АК=18, ВК=32 АВ=50 - гипотенуза
АС²=АК²+СК²=18²+24²=324+576=900
АС=30
ВС²=СК²+КВ²=32²+24²=1024+576=1600
ВС=40
Периметр Р=АВ+ВС+АС+30+40+50=120см

2) Свойство биссектрисы угла треугольника.
Биссектриса угла треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника:
4:5=х:(х+2)
4(х+2)=5х.
4х+8=5х
х=8
х+2=10
Противоположная сторона- катет- разделена на отрезки 8 и 10.
Значит один катет равен 18.
Другой 4к, а гипотенуза 5к.
Применим теорему Пифагора:
(5к)²=(4к)²+18²
25к²-16к²=324,
9к²=324
к²=36
к=6
5·6=30 см - гипотенуза
4·6=24 см - другой катет
Р=30+24+18=72 см
4,4(53 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ