т.к Сечением у нас является прямоугольный треугольник ABC . где BC-гипотенуза . а AC-катет (радиус) Из этого по теореме Пифагора найдем AC . т.к треуг прямоугольный то AC=AB(представим как х) ПОлучится уравнение . Х(в квадрате )+Х(в квадрате)=144. из этого получаем 2Х(в квадрате)=144 . Х=корень из 72 т.е 3 корней из 8 . AC=3 корней из 8(радиус)
1 найдем площ основания = Sосн=пr^2= п*(3 корней из 8)^2(в квадрате)=72п. Sосн=72п
2 найдем площ бок поверх Sбок=пrl(где l это гипотенуза BC) = п*3 корней из 8*12=36п корней из 8
3 Sпол = Sбок+Sосн=36п корней из 8 + 72п
Всё
А - (см) - катет 1, против известного угла
Б - (см) - катет 2, соприкасается с известным углом
С - (см) - гипотенуза
1) Определить значение тангенса угла ТАН (известный угол)
2) Определить длину неизвестного катета через тангенс ТАН (известный угол) = А / Б
- если известен катет (А) лежащий против известного угла, то находишь катет Б
Б = А / ТАН (известный угол)
- если известен прилежащий катет (Б) к известному углу, то находишь катет А
А = Б * ТАН (известный угол)
3) Определить по теореме Пифагора длину гипотенузы (С) - С^2 = А^2 + Б^2,
откуда С = корень квадратный из ( А^2 + Б^2)
4) Определить ПЕРИМЕТР = А+Б+С (см)
5) Определить ПЛОЩАДЬ треугольника равную половине произведения его катетов. т. е. S = ( 1/2 х А х Б ) (кв. см)