Вквадрате abcd точка k середина стороны bc точка m середина стороны ab докажите что прямые ak и md взаимно перпендикулярны. e-точка пересечения прямых ak и md.
треугольник АВК= треугольнику АМД (катеты). Тогда угол МАК=углу АДМ;угол ВКА = углу АМД. Угол КАД=углуВКА(при парал.прямых)=углу АМД. Из этого следует:90+АМД+МДА=180 АМД=КАД 90+КАД+МДА=180 но при этом в треугольнике АОД (О-точка пересечения) КАД+МДА+АОД=180. Из этого следует,что угол АОД=90)))
Обозначил меньшее основание - а, большее основание - b. Тогда периметр трапеции, с учётом условия равенства меньшего основания и боковых сторон, можно записать так Р=3*а+b. Площадь трапеции выглядит так: S=1/2*(a+b)*h, подставим известные нам значения 128=1/2*(a+b)*8 или a+b=(128*2)/8; a+b=32. Выразим из последнего уравнения b и подставим его в уравнение периметра: b=32-a; P=3*a+32-a; получим 52=2*а+32; 2а=52-32; 2а=20; а=10 см. b=32-10=22 см. Получили, что боковые стороны и меньшее основание равны 10 см, а большее основание равно 22 см.
Решить треугольник - найти его характеристики по заданным условиям. Нам надо найти угол BAC, стороны AC и AB. Найдём угол BAC: BAC = 180° - (30° + 105°) = 180° - 135° = 45° По теореме синусов найдём сторону AC: (BC)/(sinBAC) = (AC)/(sinABC); (3√2)/(√2/2) = (AC)/(1/2); AC = (3√2 * 1/2)/(√2/2) = 3√2 * 1/2 * 2/√2 = (3√2)/(√2) = 3 см По той же теореме синусов найдём сторону AB: (AC)/(sinABC) = (AB)/(sinBCA); sin105° = sin(50+50+5) = 0.766 + 0.766 + 0.0871 = 1.6191 (3)/(1/2) = (AB)/(1.6191); AB = (3 * 1.6191)/(1/2) = 3 * 1.6191 * 2 = 9.7146 ≈ 10 см ответ: угол BAC = 45°; AC = 3 см; AB = 10 см
треугольник АВК= треугольнику АМД (катеты).
Тогда угол МАК=углу АДМ;угол ВКА = углу АМД.
Угол КАД=углуВКА(при парал.прямых)=углу АМД.
Из этого следует:90+АМД+МДА=180
АМД=КАД
90+КАД+МДА=180
но при этом в треугольнике АОД (О-точка пересечения) КАД+МДА+АОД=180.
Из этого следует,что угол АОД=90)))