Треугольник BAD - равнобедренный с основанием BD, ведь его боковыми сторонами являются AB и AD, а они равны, т.к. все стороны ромба равны. Получается, что AC - биссектриса угла BAD, т.к. диагонали ромба (AC и BD) всегда пересекаются под прямым углом, а это значит, что AC - высота, проведенная к основанию равнобедренного треугольника, а она является также и биссектрисой. Получается, что угол BAD = 2* 28 = 56 градусов. Угол DCB = углу BAD, a угол CBA = углу CDA. => угол CBA = угол CDA = (360 - 2*56)/2 = (360 - 112) /2 = 248/2 = 124 ответ: величина тупого угла = 124 градуса
Билет № 3 3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника. Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12 S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4 3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника. Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4. В соответствии со свойством касательных, проведенных из одной точки к окружности AM=AK CK=CN BM=BN P=3+3+4+4+3+3=20
Объяснение:
Длина отрезка по теореме Пифагора.
a = Ax - Bx = 4 - 0 = 4
b = Ay - By = 7 - (-10) = 17
c² = 4² + 17² = 16 + 289 = 305
AB = √305 - длина отрезка - ответ (≈17,5)
Координата середины - среднее арифметическое координат краёв.
Сх = (Ах + Вх)/2 = (4 + 0)/2 = 2
Су =(Ау + Ву)/2 = (7 - 10)/2 = - 1,5
С(2;-1,5) - координата середины - ответ