М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
varenik506
varenik506
14.02.2021 07:02 •  Геометрия

Дан треугольник ,а(-6: 1) в(2: 4) с(2: -2) доказать что треугольник равнобедренный найти его площадь

👇
Ответ:
Bomb9931
Bomb9931
14.02.2021

длины сторон

AB² = (-6-2)² + ( 1-4)² = 8² + 3² = 64 + 9 = 73

AB = √73

BC² = (2-2)² + (4+2)² = 0 + 36 = 36

BC = 6

AC² = (-6-2)² + (1+2)² = 8² + 3² = 73

AC = √73

Две стороны равны, треугольник равнобедренный.

Для вычисления площади найдём высоту к стороне ВС

H = 1/2(B+C) = 1/2(2+2;4-2) = (2;1)

AH² = (-6-2)² + (1-1)² = 8² + 0 = 64

AH = 8

S(ABC) = 1/2*AH*BC = 1/2*8*6 = 4*6 = 24 ед²

4,6(15 оценок)
Ответ:
ryjakomsp00lne
ryjakomsp00lne
14.02.2021

Расстояние между точками (x1, y1) и (x2, y2) равно: \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Следовательно:

AB=\sqrt{(2-(-6))^{2}+(4-1)^{2}}=\sqrt{64+9}=\sqrt{73}\\BC=\sqrt{(2-2)^{2}+(-2-4)^{2}}=\sqrt{0+36}=\sqrt{36}=6\\AC=\sqrt{(2-(-6))^{2}+(-2-1)^{2}}=\sqrt{64+9}=\sqrt{73}

Т.к. AC = AB, то ΔABC - равнобедренный

4,7(45 оценок)
Открыть все ответы
Ответ:
Katiadimova3
Katiadimova3
14.02.2021
По первому признаку подобия треугольников имеем, что данные равнобедр.треуг. подобны. Коэффициент их подобия равен как отношению соотв.сторон, так и отношению периметров. Найдем боковые стороны первого треугольника. Высота к основанию является также медианой, значит по теореме Пифагора боковая сторона равна кореньиз(64+36)=10. Периметр первого треугольника равен 10+10+16=36. Коэффициент подобия k=54/36=3/2=1,5. Значит боковые стороны второго равнобедр.треугольника равны 10*1,5=15 см, а основание равно 16*1,5=24 см.
4,8(22 оценок)
Ответ:
yuliaatamanchuk
yuliaatamanchuk
14.02.2021
Если прямая (DC),  параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость  проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC).
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3. 
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²

Умоляю, с обязательно рисунок и подробное решение сторона ав квадрата abcd лежит в плоскости α. прям
4,7(100 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ