ответ:4)а 5)в 6)б 7)в
Объяснение:4)Т.к центральный угол О =100°=> и дуга, на которую он смотрит тоже равна 100°,тогда х=50,потому что он вписаный(вписаный угол равен половине дуги ,на которую он опирается)
5)угол равен 70,тогда дуга равна 140(описанный угол,дуга в 2р больше него)
Вся окружность =360
360-140=220(это дуга,на которую смотрит х),тогда сам х=220:2=110(угол вписанный)
6)О=64,дуга тоже 64(центральный),х описанный =64/2=32
7)Т.к ВО(это радиус)=АД,то АД=ДО т.к ДО тоже радиус,тогда ВО в 2р меньше ВО,угол В=90 т.к радиус ,проведенный в точку касания явл. перпендикуляром на эту касательную.Тогда мы можем применить свойство треугольника :сторона,лежащая напротив угла в 30°=половине гипотенузы ,тогда угол ВАО=30,а ВАО=ОВС т.к это касательные вышли из 1ой точки,тогда угол ВАС=60
самый простой из условия видно, что стороны треугольников попарно пропорциональны с коэффициентом подобия k=3=15/5=24/8=36/12
это значит, что высота h1 в первом треугольнике к стороне 5, будет пропорциональна высоте h2 вo втором треугольнике к стороне 15
причем h2=kh1, т.е. h2=3h1
тогда
площадь первого треугольника S1=1/2*5*h1
площадь второго треугольника S2=1/2*15*h2
рассмотрим отношение площадей
S1/S2=1/2*5*h1/1/2*15*h2=5*h1/(15*3h1)=1/9
ответ S1:S2=1:9
самый тупой по формулe Герона
S=√p(p-a)(p-b)(p-c)
S площадь треугольника
a,b,c стороны треугольника
р-полупериметр треугольника
потом сравнить S1/S2
Четырехугольник ATOC является равнобедренной трапецией (TO||AC, ∠A=∠C). Около равнобедренной трапеции можно описать окружность.
Около четырехугольника можно описать в окружность только тогда, когда сумма его противоположных углов равна 180. (Противоположные углы вписанного четырехугольника опираются на дополнительные дуги. Дополнительные дуги составляют окружность, 360. Вписанный угол равен половине дуги, на которую опирается. Сумма противоположных углов вписанного четырехугольника равна 180.)
В трапеции сумма углов, прилежащих боковой стороне, равна 180. (Сумма односторонних углов при параллельных равна 180.) В равнобедренной трапеции углы при основаниях равны, следовательно сумма противоположных углов также равна 180 и около равнобедренной трапеции можно описать окружность.