Втреугольнике klm взяты точка a на стороне lm, а точка b – на стороне km. отрезки ka и lb пересекаются в точке o, la : am = 3 : 4, ko : oa = 3 : 2. найдите lo : ob.
Обозначим ключевые точки как показано на рисунке. Проведем продолжение высоты OE к стороне AB и обозначим точку пересечения как F (как показано на рисунке). Площадь ромба (как и параллелограмма) равна произведению высоты на сторону ромба. Высота ромба = EF (т.к. EF перпендикулярна CD). Рассмотрим треугольники DOE и BOF. DO=OB (по второму свойству ромба) /DOE=/BOF (т.к. они вертикальные) /EDO=/FBO (т.к. это внутренние накрест-лежащие) Следовательно, треугольники DOE и BOF равны по второму признаку. Тогда OE=OF => EF=2*OE=2*1=2 Sромба=EF*CD=2*9=18 ответ: Sромба=18
Прямая, ограниченная с одной стороны называется лучом. Если на любой прямой отметить точку, то мы получим 2 направленных друг против друга луча с общим началом в этой точке. Углом называется часть плоскости, ограниченная двумя лучами, с общим началом. Если стороны угла лежат на одной прямой (то есть точка на прямой с двумя лучами) то это развернутый угол равный 180 градусам. Если два луча с общим началом перпендикулярны друг другу - то это прямой угол, равный 90 градусов. Углы меньше 90 градусов называются острыми. Углы больше 90 градусов но меньше развернутого называются тупыми. И это не оскорбление, просто название. Луч, с началом в вершине угла и делящий его на два равных угла называется биссектрисой. Легко запомнить пошлый мем биссектриса это такая крыса, которая бегает по углам и делит их пополам. Углы измеряются в градусах. Сколько градусов поместится в угол, столько в нем и градусов.Но это во вложении.
Проведем через точку В прямую параллельно отрезку AB, затем продолжим отрезок AN до пересечения с этой прямой и поставим там точку К:
Задача на подобие и теорема Менелая. Задание 16
Рассмотрим треугольники ANC и BNK. Эти треугольники подобны, так как AC||BK. Стороны треугольника BNK относятся к сторонам треугольника ANC как 2:1.
Задача на подобие и теорема Менелая. Задание 16
Пусть AC=x, BK=2x.
Теперь продолжим отрезок MC до пересечения с прямой BK. Поставим там точку L.
Задача на подобие и теорема Менелая. Задание 16
Мы получили подобные треугольники LMB и AMC, сходственные стороны которых относятся как 3:2. Так как AC=x, то LB=1,5x.
Пусть LM=3n, MC=2n. Тогда LC=5n.
Теперь рассмотрим подобные треугольники LOK и AOC.
Задача на подобие и теорема Менелая. Задание 16
{LK}/{AC}={3,5x}/{x}={3,5}/1, следовательно, {LO}/{OC}={3,5}/1. Пусть LO=3,5z, OC=z. Тогда LO+OC=LC=4,5z.
Получили, что 5n=4,5z. Тогда MC=2n=9/5z. Отсюда MO=MC-CO=9/5z-z=4/5z
Отсюда CO:OM=z:4/5z=5:4=1,25.
ответ: 1,25