1.длина ребра куба АВСДА1В1С1Д1 равна 4 см. Вычислите длину радиуса окружности, вписаной в треугольник ДА1С1. 2.В равнобедренный треугольник АВС (АВ=ВС) вписана окружность. Касательная L к окружности, параллельна прямой АС, пересекает стороны АВ и ВС в точках Т и Р соответственно. Известно, что периметр четырехугольника АТРС равен 30 см и АС=12 см. Вычислите длину радиуса окружности. 3.В прямоугольнике АВСД, АВ =4 см, ВС= 5 см. Точка Р принадлежит отрезку ВС. В четырехугольник АРСД вписана окружность. Вычислите периметр четырехугольника вершинами которого являются точки А, Д, центр окружности и середина стороны АВ.
Прямая призма. Sбок пов.=Росн*Н Pосн=4*с, с - сторона ромба диагонали ромба перпендикулярны и точкой пересечения делятся пополам. прямоугольный треугольник: катет а= 8 см(16:2) - (1/2) диагонали ромба -основания призмы катет b =15 см (30:2) - (1/2) диагонали ромба гипотенуза с - сторона ромба по теореме Пифагора: c²=8²+15², c=17 см бОльшая диагональ призмы =50 см -наклонная. Большая наклонная имеет бОльшую проекцию, => рассмотрим прямоугольный треугольник: гипотенуза с=50 см - бОльшая диагональ призмы катет а= 30 см - бОльшая диагональ основания призмы катет H - высота призмы, найти. по теореме Пифагора: 50²=30²+H². H²=1600. H=40 см